
Review Article

Journal of Advanced Research in Operating System Development and Evolution
Copyright (c) 2025: Author(s). Published by Advanced Research Publications

Journal of Advanced Research in Operating System Development and Evolution 

Peer Reviewed Journal

I N F O A B S T R A C T

E-mail Id: 
anandahuja@gmail.com
Orcid Id: 
https://orcid.org/0009-0009-7937-4593
How to cite this article:
Ahuja A. Cross-Platform and Multi-Architecture 
Operating Systems: Enabling Seamless 
Interoperability in a Diverse Computing 
Landscape. J Adv Res Oper Syst Dev Evol 2025; 
1(1): 9-15.

Date of Submission: 2025-02-09
Date of Acceptance: 2025-03-25

Cross-Platform and Multi-Architecture Operating 
Systems: Enabling Seamless Interoperability in 
a Diverse Computing Landscape
Anand Ahuja
Student, Ghanshyam Singh Degree College Varanasi, Uttar Pradesh, India

The ever-evolving landscape of computing technologies demands 
operating systems (OS) that can efficiently manage and support 
diverse hardware architectures and platforms. With the proliferation 
of heterogeneous devices—ranging from desktops and laptops to 
mobile devices, servers, and embedded systems—cross-platform and 
multi-architecture OS have become critical in ensuring interoperability, 
scalability, and flexibility. These systems allow software to run seamlessly 
across different environments, optimizing resource utilization and 
enhancing user experience. This article explores the concept of cross-
platform and multi-architecture OS, examining their features, challenges, 
benefits, and their role in enabling the seamless integration of various 
hardware architectures. Additionally, we delve into the strategies and 
tools used to develop and maintain such systems in modern computing 
environments.

Keywords: Cross-Platform, Multi-Architecture, Operating Systems, 
Interoperability, Heterogeneous Systems, Resource Management

Introduction 
The need for cross-platform and multi-architecture operating 
systems (OS) arises from the growing complexity of modern 
computing environments. With the proliferation of diverse 
devices—ranging from mobile phones, tablets, and laptops 
to edge devices, embedded systems, and even specialized 
hardware like quantum processors—the challenge of 
maintaining compatibility and performance across such a 
vast array of platforms has become paramount. Additionally, 
the expansion of cloud computing, where applications may 
run on a variety of physical and virtual infrastructures, 
further emphasizes the necessity for operating systems 
that can seamlessly manage multiple platforms and 
architectures.

In this context, cross-platform OS enables software 
applications to be developed once and run on multiple 
platforms, such as Windows, macOS, and Linux, without 
the need for major modifications or rewrites of the code. 
This is particularly advantageous for software developers, 
as it reduces development costs and time while also 
allowing broader user bases across different computing 
environments.

On the other hand, multi-architecture operating systems 
allow the same platform to support multiple processor 
architectures (e.g., x86, ARM, PowerPC). Such OSs are 
crucial for enterprises and industries dealing with a mix 
of different hardware configurations, such as cloud data 
centers, where servers with varied processor architectures 

Volume 1, Issue 1 - 2025, Pg. No. 9-15



10
Ahuja A
J. Adv. Res. Oper. Syst. Dev. Evol. 2025; 1(1)

are common. In these environments, OSs need to efficiently 
allocate and manage resources across diverse hardware 
to ensure optimal performance and scalability.

Cross-platform and multi-architecture OS solutions bring 
about a unified approach to managing hardware diversity. 
As technology continues to evolve with the growing use of 
IoT devices, edge computing, and the increasing reliance on 
cloud infrastructures, these systems will continue to play a 
pivotal role in enabling smooth interoperability, resource 
optimization, and seamless user experiences.

This article explores the features, technologies, and 
strategies that enable cross-platform and multi-architecture 
operating systems to meet the needs of today’s complex 
and rapidly changing computing landscape. We will delve 
into the key challenges involved, how modern operating 
systems handle such complexity, and what the future holds 
for OS development in an increasingly heterogeneous 
computing world.1

Understanding Cross-Platform and Multi-
Architecture OS 

Cross-Platform Operating Systems 

The concept of cross-platform operating systems is driven 
by the growing demand for software that can seamlessly 
operate on a wide range of devices without needing to be 
rewritten for each hardware architecture. This ability to 
create cross-platform applications has several advantages, 
including reduced development time, lower maintenance 
costs, and the ability to reach a broader audience.

Key Features of Cross-Platform Operating Systems:

•	 Abstraction Layer: Cross-platform OSs abstract hard-
ware details and provide a uniform interface to ap-
plications, regardless of the underlying hardware ar-
chitecture. This allows developers to focus on writing 
software that interacts with high-level APIs rather than 
dealing with low-level hardware-specific code.

•	 Platform-Specific Compatibility: Although these OSs 
abstract hardware, they must ensure compatibility 
with the specific APIs, libraries, and system calls for 
each platform they support. For example, Linux-based 
applications might require different file system han-
dling than Windows-based applications, even if both 
run on a similar architecture.

•	 Tooling and Frameworks: Cross-platform frameworks 
and toolkits like Qt, Electron, and JavaFX are built to 
support multiple OS platforms. These tools allow devel-
opers to write their code once and deploy it on several 
OS environments. They handle the intricacies of each 
operating system while maintaining consistent user 
experiences and features across different platforms.

•	 Containerization for Cross-Platform Development: 
The increasing use of containers, such as Docker, also 

enables cross-platform application deployment. By 
using containerized environments, applications can 
run in the same way on various operating systems, 
ensuring uniformity in behavior regardless of where 
the container is deployed.2

Challenges in Cross-Platform OS Development:

•	 Performance Optimizations: While cross-platform 
OSs provide the convenience of wide compatibility, 
they may sometimes sacrifice performance due to the 
abstraction layers involved. Ensuring that applications 
run efficiently across various platforms can be a 
challenge for developers.

•	 Hardware-Specific Optimizations: Cross-platform 
systems must balance providing compatibility across 
devices while also catering to platform-specific 
optimizations, such as enhanced GPU support on 
certain devices or specific device drivers for specialized 
hardware.

Multi-Architecture Operating Systems 

Multi-architecture operating systems go a step further 
by enabling the execution of software across multiple 
architectures within the same platform. These OS solutions 
are critical for managing complex hardware ecosystems 
where interoperability between various types of processors 
is necessary.

Key Features of Multi-Architecture Operating Systems:

•	 Architecture-Agnostic Kernels: Multi-architecture OSs 
often have specialized kernels capable of supporting 
multiple CPU architectures. These kernels are designed 
to manage different instruction sets, memory archi-
tectures, and hardware interfaces, ensuring smooth 
operation of programs written for different architec-
tures on the same machine.

•	 Virtualization and Emulation: Virtualization technol-
ogies, like QEMU and VMware, play an essential role 
in multi-architecture OSs by providing a virtualized 
environment in which different processor architec-
tures can be emulated. These tools allow software 
developed for one architecture (e.g., x86) to run on 
another (e.g., ARM), without requiring direct hardware 
support. This is particularly useful in development 
and testing environments where developers need to 
simulate various hardware setups without physically 
possessing each type of device.

•	 Hybrid Systems: Hybrid systems use virtualization or 
emulation to run software across multiple architec-
tures concurrently. For example, a system might run 
both ARM-based and x86-based workloads, allowing 
seamless integration and utilization of different hard-
ware for varied tasks. This is especially useful in cloud 
data centers where different workloads with varied 



11
Ahuja A 

J. Adv. Res. Oper. Syst. Dev. Evol. 2025; 1(1)

processing power requirements need to be supported 
on different hardware platforms.

•	 Kernel Customization: The kernel of a multi-archi-
tecture OS must be highly customizable to manage 
resources across diverse processor architectures. This 
includes providing support for various memory models, 
managing threads on heterogeneous processors, and 
synchronizing processes that run on different hardware 
types. Advanced scheduling algorithms are essential to 
balance workloads effectively across multi-architecture 
environments.3

Challenges in Multi-Architecture OS Development:

•	 Resource Allocation and Management: One of the 
primary challenges in multi-architecture OS design is 
efficiently managing resources (CPU, memory, etc.) 
across diverse hardware platforms. A robust system 
for resource allocation is required to ensure that all 
devices are utilized optimally without causing conflicts 
or bottlenecks.

•	 Cross-Architecture Synchronization: Managing syn-
chronization between different architectures—es-
pecially when some architectures may have multiple 
cores or processors with varying clock speeds or capa-
bilities—can be complex. Efficient communication and 
data exchange between these processors are critical 
to achieving high performance and stability.

•	 Compatibility Across Architectures: Ensuring that 
software works properly across multiple architectures 
often requires more complex debugging, testing, and 
optimization strategies. Developers must test appli-
cations across different hardware environments to 
ensure consistent behavior and performance.

Use Cases of Multi-Architecture OS:

•	 Data Centers and Cloud Computing: In cloud envi-
ronments, where diverse hardware is often used, 
multi-architecture OSs allow workloads to be distrib-
uted across various processors, including x86, ARM, 
and GPUs. This flexibility allows cloud providers to 
maximize resource utilization and meet specific per-
formance requirements.

•	 Edge Computing and IoT: Multi-architecture OSs en-
able edge devices with different processor types to 
work in tandem. For example, edge computing systems 
might run a combination of ARM-based processors 
(for power efficiency) and x86-based processors (for 
heavy computational tasks), with the OS managing 
the coordination.4

•	 Embedded Systems: In embedded systems that require 
integration of multiple hardware components, multi-ar-
chitecture OSs help in creating interoperable systems. 
For example, an embedded system may include both 
ARM and x86 processors, with a multi-architecture 

OS ensuring compatibility and efficient performance 
across these components.

The combination of cross-platform and multi-architecture 
operating systems addresses the increasing diversity of 
modern computing environments. Cross-platform OSs 
enable broad compatibility across various devices and 
platforms, allowing developers to write applications that can 
run seamlessly on multiple operating systems. Meanwhile, 
multi-architecture OSs cater to more complex environments 
where multiple processor architectures coexist and need 
to interoperate effectively. These technologies are critical 
for cloud computing, IoT, edge computing, and enterprise 
environments, and their importance is only expected to 
grow as the computing landscape continues to evolve.

The evolution of operating systems towards greater 
cross-platform and multi-architecture capabilities will 
continue to drive innovation, making it easier for users and 
developers to work across diverse systems and hardware 
configurations.

Key Features of Cross-Platform and Multi-Architecture OS 

Hardware Abstraction

The Hardware Abstraction Layer (HAL) is an essential 
component in both cross-platform and multi-architecture 
operating systems. The HAL provides an interface between 
the operating system and the hardware, ensuring that 
software applications interact with hardware in a way that 
is independent of the underlying architecture.

The HAL achieves this by abstracting the low-level details 
of hardware, such as CPU types, memory management, 
and peripheral device handling, and providing a consistent 
interface that can be accessed by higher-level software 
components. This allows applications to run on different 
platforms—whether x86, ARM, or other architectures—
without being rewritten or significantly modified. The 
advantages of hardware abstraction include:

•	 Portability: Software written for one platform can easily 
be adapted to run on another platform by changing 
or extending the HAL. This increases the portability 
of applications and reduces the time and resources 
required for cross-platform development.5

•	 Hardware Independence: By abstracting hardware 
details, applications and system software are decoupled 
from specific hardware requirements, enabling 
developers to focus on writing code without worrying 
about the underlying hardware variations.

•	 Easier System Maintenance: When hardware is 
upgraded or changed, only the HAL layer typically 
requires modification, leaving the rest of the system 
unaffected. This reduces system maintenance efforts, 
especially in large, heterogeneous environments.



12
Ahuja A
J. Adv. Res. Oper. Syst. Dev. Evol. 2025; 1(1)

Containerization and Virtualization
Containerization and virtualization have revolutionized 
the way cross-platform and multi-architecture operating 
systems manage and deploy applications. Both of these 
technologies abstract hardware dependencies, enabling 
software to run consistently across different environments.

Containerization:

Containerization technologies like Docker and Kubernetes 
allow developers to package applications along with 
their dependencies (e.g., libraries, configurations, and 
environment settings) into isolated, portable containers. 
These containers can run on different operating systems and 
hardware architectures without modification because they 
encapsulate all necessary components for the application 
to execute.

Key benefits of containerization in cross-platform and 
multi-architecture environments include:

•	 Consistency Across Environments: Containers ensure 
that applications behave the same way across develop-
ment, testing, and production environments, regardless 
of the underlying hardware or operating system.

•	 Isolation: Containers provide an isolated environment 
where applications can run without affecting other 
applications, making it easier to deploy and manage 
complex systems.

•	 Resource Efficiency: Containers are more lightweight 
than traditional virtual machines, as they share the 
host operating system’s kernel rather than running 
an entire guest OS. This results in faster startup times 
and lower resource overhead.

Kubernetes helps manage containerized applications 
at scale, ensuring that containers are automatically 
deployed, scaled, and managed across different hardware 
architectures and systems. Kubernetes itself is designed to 
be architecture-agnostic, running on a variety of hardware 
types, including x86 and ARM, and seamlessly managing 
cross-platform applications.6

Virtualization:

Virtualization allows for running multiple operating systems 
on a single physical machine. Hypervisors like VMware, 
KVM, and Hyper-V enable the creation of virtual machines 
(VMs) that emulate different hardware architectures. This 
enables multi-architecture systems where different types 
of software, optimized for various processor types, can run 
on the same physical machine.

Key advantages of virtualization in multi-architecture 
environments:

•	 Flexibility: Virtualization provides the ability to run 
software intended for different processor architectures 

on a single host. For instance, an x86 processor can 
run ARM-based applications through a virtual machine 
with ARM emulation support.

•	 Isolation and Security: Virtual machines provide 
complete isolation between workloads, ensuring 
that one workload cannot interfere with or affect the 
performance of others.

•	 Resource Allocation: Virtualization allows for efficient 
resource management, enabling a single host machine 
to run multiple VMs, each optimized for a specific 
architecture or workload.

Virtualization technologies are commonly used in cloud 
computing environments, enabling providers to run multiple 
architectures (such as x86 and ARM) on the same physical 
infrastructure. This approach optimizes resource utilization 
and enhances workload flexibility, making it an essential 
feature for modern multi-architecture OSs.

Unified API and Software Frameworks
Unified APIs and software frameworks are crucial for 
ensuring seamless interoperability across different 
platforms and hardware architectures. These tools allow 
developers to write code once and run it on various 
platforms without modifying the codebase for each target 
platform. They also help abstract the platform-specific 
details, providing consistent functionality regardless of 
the underlying hardware.

•	 Unified APIs: A unified API provides a standard set of 
programming interfaces that abstract the differences 
between operating systems and hardware architectures. 
For example, libraries like POSIX (Portable Operating 
System Interface) and OpenGL provide standardized 
interfaces for system calls and graphical rendering that 
can be used across multiple platforms. By using these 
unified APIs, developers can write applications that 
interact with the system in the same way, regardless of 
whether the application is running on Linux, Windows, 
or macOS.

•	 Cross-Platform Frameworks: Frameworks like Qt and 
Electron offer developers tools to write cross-platform 
applications with minimal effort. These frameworks 
handle the complexity of interacting with different 
operating systems, allowing the developer to focus 
on building application logic rather than dealing with 
OS-specific intricacies.

•	 Qt: This framework supports a wide range of platforms, 
including Linux, macOS, Windows, and embedded 
systems, while offering a unified programming 
interface. Qt abstracts low-level operating system 
details, providing consistent behavior and appearance 
across all platforms.

•	 Electron: Electron allows developers to build cross-
platform desktop applications using web technologies 



13
Ahuja A 

J. Adv. Res. Oper. Syst. Dev. Evol. 2025; 1(1)

(HTML, CSS, and JavaScript). By leveraging Node.js 
and Chromium, Electron enables the development 
of applications that work across multiple platforms, 
from Windows to macOS to Linux, with consistent 
user experiences.7

•	 Middleware for Cross-Architecture Compatibility: 
Middleware solutions like Java Virtual Machine (JVM) 
and .NET Core provide runtime environments that can 
abstract hardware-specific differences and allow the 
same codebase to run across different platforms. These 
environments support cross-platform execution by 
converting application code into intermediate bytecode 
or a universal machine language, which is then executed 
by the runtime environment on different architectures.

•	 Java: The JVM allows Java applications to run on any 
platform that has a compatible JVM installed. This 
“write once, run anywhere” approach ensures that 
applications are portable across diverse architectures, 
such as x86, ARM, and others.

•	 .NET Core: Microsoft’s cross-platform version of 
the .NET Framework enables developers to create 
applications that run on Windows, Linux, and macOS. 
.NET Core abstracts the operating system-specific 
dependencies, providing consistent APIs for cross-
platform development.

Seamless Integration with Cloud and Edge 
Computing
As the need for scalable, high-performance systems grows, 
especially with the rise of cloud computing and edge devices, 
cross-platform and multi-architecture OSs are increasingly 
integrated with cloud and edge computing solutions. Cloud 
computing platforms often require the ability to run on 
a diverse set of hardware platforms, including different 
processor architectures (e.g., x86, ARM) and operating 
systems (e.g., Linux, Windows). Multi-architecture OSs 
enable cloud services to efficiently handle workloads from a 
wide variety of devices, optimizing for performance, power 
efficiency, and cost.

•	 Edge computing: Multi-architecture OSs are also pivotal 
for edge computing, where computational power is 
distributed closer to the data source, reducing latency 
and bandwidth usage. These OSs enable devices with 
varying processor architectures to work in tandem, 
coordinating real-time decision-making and resource 
management.

•	 Cross-platform and multi-architecture operating 
systems provide essential capabilities for the modern 
computing landscape, enabling software to run 
seamlessly across diverse hardware environments. 
The key features, such as hardware abstraction, 
containerization, unified APIs, and seamless integration 
with cloud and edge computing, help overcome the 

challenges of heterogeneous systems. As technology 
continues to advance, these OSs will become even 
more crucial in supporting the growing demand for 
interoperability, scalability, and efficiency across an 
ever-expanding range of devices and platforms.8

Challenges in Developing Cross-Platform and Multi-
Architecture OS (Continued)

While cross-platform and multi-architecture operating 
systems offer significant advantages, their development and 
implementation come with several challenges. Addressing 
these challenges is crucial for ensuring the effective 
functionality and scalability of these OSs in a wide range 
of environments. Some of the primary challenges include:

Performance Overhead
One of the most significant challenges in developing cross-
platform and multi-architecture operating systems is the 
performance overhead caused by abstraction layers and 
compatibility mechanisms. These OSs must provide a 
layer of abstraction to accommodate different hardware 
architectures, which can slow down the execution of 
applications. In resource-constrained environments, such 
as IoT devices, mobile systems, or edge computing nodes, 
performance overhead can have a pronounced impact on 
overall system efficiency.

For example, while virtualization and containerization 
technologies offer benefits like flexibility and isolation, they 
also introduce additional overhead, as these technologies 
abstract hardware-specific details and allocate resources 
dynamically. In multi-architecture OSs, where multiple 
architectures need to be supported simultaneously, this 
overhead can be further exacerbated, leading to increased 
latency and reduced processing power.9

4.2 Hardware Compatibility
•	 Rapid advancements in hardware technology present 

another challenge for cross-platform and multi-
architecture OS development. As new hardware 
architectures emerge, the OS must be adapted 
quickly to support these devices. This process can be 
time-consuming, especially when different hardware 
manufacturers use proprietary architectures, making it 
difficult for OS developers to create a unified solution.

•	 Moreover, some hardware architectures may require 
unique drivers, firmware updates, or other specialized 
support that must be integrated into the OS. Ensuring 
timely updates and support for a wide range of devices 
is critical to maintaining the OS’s compatibility and 
performance across diverse platforms. This challenge 
becomes even more complex in environments where 
custom or specialized hardware, such as embedded 



14
Ahuja A
J. Adv. Res. Oper. Syst. Dev. Evol. 2025; 1(1)

systems or GPUs, are used in conjunction with general-
purpose processors.

Software Compatibility
•	 Software compatibility is another key challenge in 

multi-architecture and cross-platform OS environments. 
Legacy applications and software optimized for specific 
architectures may not work efficiently or at all when 
moved to a different hardware platform. For example, 
applications designed for x86 processors may not 
perform optimally on ARM processors, which differ 
in instruction sets and architecture.

•	 To overcome this, cross-platform OSs must employ 
mechanisms like binary translation, emulation, or 
runtime environments to execute legacy applications. 
However, these approaches may introduce performance 
penalties and limit the effectiveness of the system, 
especially when running complex or resource-intensive 
applications. Ensuring that legacy software can run 
without modification or significant performance 
degradation is a critical consideration for developers.

Security Concerns
Multi-architecture and cross-platform systems introduce 
additional security complexities. Ensuring the integrity 
of applications and services across multiple platforms 
requires robust security measures that account for different 
processor types, operating systems, and communication 
protocols. A key challenge is ensuring that vulnerabilities in 
one platform or architecture do not affect the entire system.

Moreover, the diverse nature of multi-architecture OSs 
increases the potential attack surface, as attackers may 
exploit weaknesses in one architecture to compromise other 
parts of the system. For example, vulnerabilities that exist 
in ARM-based devices may not be present in x86-based 
devices, but the OS must still ensure that both architectures 
are equally secure. Managing security across different 
hardware types and OS versions requires a comprehensive 
security strategy that includes multi-layered defenses, 
encryption, secure boot processes, and real-time monitoring 
for anomalies.

Benefits of Cross-Platform and Multi-Architecture 
OS

Despite the challenges, cross-platform and multi-
architecture operating systems offer several key benefits 
that make them highly valuable in modern computing 
environments:

Cost Efficiency

Cross-platform and multi-architecture OSs can significantly 
reduce hardware and software development costs. By 
enabling software to run on a variety of platforms, businesses 
can avoid the need to develop separate applications for each 

hardware environment. This is particularly beneficial for 
companies that want to target multiple device types—such 
as desktops, mobile devices, and embedded systems—
without developing custom software for each one.

For example, a business that develops a mobile application 
for both Android and iOS can save time and resources 
by relying on a cross-platform framework, such as React 
Native or Flutter, which allows the same codebase to run 
on both platforms. Similarly, multi-architecture OSs in cloud 
computing environments enable cloud providers to run 
different types of workloads across a diverse set of hardware, 
optimizing resource utilization and reducing the need for 
multiple infrastructure solutions.

Flexibility and Scalability
Cross-platform and multi-architecture operating systems 
enable a high degree of flexibility and scalability in modern 
computing environments. As businesses grow and their 
technology needs evolve, these OSs allow them to seamlessly 
adapt to new hardware, platforms, and workloads. For 
instance, cloud service providers can easily scale their 
infrastructure by adding new virtual machines or containers 
based on different hardware architectures, without needing 
to worry about compatibility issues.

The flexibility offered by multi-architecture OSs is also 
evident in edge computing, where different devices with 
varying hardware configurations must be supported. 
A multi-architecture OS can handle the deployment of 
applications and services across a wide range of edge devices, 
ensuring that each device operates at peak efficiency while 
communicating with other devices in the network.

Increased Software Reach
By enabling applications to run on multiple platforms 
and architectures, cross-platform and multi-architecture 
operating systems expand the reach of software developers. 
These systems allow developers to create applications that 
can be deployed across a broader range of devices, operating 
systems, and hardware architectures. This increases the 
potential audience for their applications, driving greater 
adoption and revenue.

For example, an application that runs on both desktop 
computers (Windows, macOS, Linux) and mobile devices 
(iOS, Android) has the potential to reach millions of users 
across a wide variety of platforms. Additionally, businesses 
can extend their software to new market segments, such as 
embedded systems, IoT devices, and automotive platforms, 
without having to rewrite or redesign their applications for 
each unique system.

Future Directions and Trends
As technology continues to evolve, the future of cross-
platform and multi-architecture operating systems will be 
shaped by emerging trends and developments:



15
Ahuja A 

J. Adv. Res. Oper. Syst. Dev. Evol. 2025; 1(1)

ARM Architecture Growth
ARM architecture is experiencing rapid growth, particularly 
in mobile devices, embedded systems, and even data 
centers. ARM’s power efficiency and scalability make it an 
attractive option for a wide range of applications, and its 
increased adoption across various industries is driving the 
need for operating systems that can seamlessly support both 
ARM and traditional x86 architectures. Operating systems 
will need to be capable of running on multiple architectures, 
enabling applications to be deployed efficiently across 
diverse environments, from smartphones to data centers.

Quantum Computing Integration
Quantum computing promises to revolutionize 
computational power, and integrating quantum architectures 
with classical systems will present significant challenges for 
operating system design. Future OSs will need to adapt to 
manage both quantum and classical resources, providing 
a unified platform for executing quantum algorithms and 
classical workloads. This will require OS developers to 
design new scheduling, resource management, and security 
mechanisms that can handle both types of computing 
simultaneously.

IoT and Edge Computing
The growth of IoT and edge computing will further drive 
the demand for cross-platform and multi-architecture OSs. 
As more devices with varying hardware architectures are 
deployed at the edge, operating systems will need to manage 
distributed workloads efficiently across heterogeneous 
platforms. This will require OSs to support a wide range 
of IoT devices, edge servers, and cloud infrastructures, 
ensuring seamless interoperability and communication 
between all components of the system.10

Conclusion
Cross-platform and multi-architecture operating systems 
are essential for addressing the diverse computing needs of 
modern businesses and developers. They enable seamless 
interoperability across a range of devices, platforms, 
and hardware architectures, helping businesses reduce 
costs, increase flexibility, and reach a wider audience. 
While there are challenges associated with developing 
and maintaining these OSs, their benefits in terms of 
scalability, cost efficiency, and application reach make them 
a critical component of future computing environments. 
As technology advances, these OSs will continue to evolve 
to meet the demands of emerging trends, including ARM 
architecture, quantum computing, and IoT, shaping the 
future of cross-platform and multi-architecture computing.

References
1.	 Tanenbaum AS, Bos H. Modern Operating Systems. 

4th ed. Pearson; 2015.

2.	 Docker, Inc. Docker: The open platform for distributed 
applications. Available from: https://www.docker.com

3.	 Gray A, Watson B. Containerization and its Role in 
CrossPlatform OS. J Comput Syst Archit. 2019;45(3):123-
130.

4.	 Brown D, Thompson S. Multi-Architecture Systems: 
Challenges and Opportunities. IEEE Trans Comput. 
2018; 67(12): 3458-3471.

5.	 Windows Subsystem for Linux (WSL). Available from: 
https://docs.microsoft.com/en-us/windows/wsl/

6.	 Love R. Linux kernel development. Pearson Education; 
2010 Jun 22.

7.	 Leeks S. Windows Subsystem for Linux 2 (WSL 2) Tips, 
Tricks, and Techniques: Maximise productivity of 
your Windows 10 development machine with custom 
workflows and configurations. Packt Publishing Ltd; 
2020 Oct 23.

8.	 Dey N. Cross-Platform Development with Qt 6 and 
Modern C++: Design and build applications with modern 
graphical user interfaces without worrying about 
platform dependency. Packt Publishing Ltd; 2021 Jun 25.

9.	 Von Hagen W. Ubuntu Linux Bible. John Wiley & Sons; 
2007 Mar 26.

10.	 Sampath P, Rao BR. Efficient embedded software 
development using QEMU. In13th Real Time Linux 
Workshop 2011.

https://www.docker.com
https://docs.microsoft.com/en-us/windows/wsl/



