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I N F O A B S T R A C T

This review aims to study the various theoretical and numerical 
investigations in the optimization of heat engines. The main focus 
is to discuss the procedures to derive the efficiency of heat engines 
under different operating regimes (or optimization criteria) for different 
models of heat engines such as endreversible models, stochastic models, 
low-dissipation models, quantum models etc. Both maximum power 
and maximum efficiency operational regimes are desirable but not 
economical, so to meet the thermo-ecological considerations, some 
other compromise-based criteria have been proposed such as Ω  criterion 
(ecological criterion) and efficient power criterion. Thus, heat engines can 
be optimized to work at an efficiency which may not be the maximum 
(Carnot) efficiency. The optimization efficiency obtained under each 
criterion shows a striking universal behaviour in the near-equilibrium 
regime. We also discussed a multi-parameter combined objective 
function of heat engines. The optimization efficiency derived from 
the multi-parameter combined objective function includes a variety 
of optimization efficiencies, such as the efficiency at the maximum 
power, efficiency at the maximum efficiency-power state, efficiency 
at the maximum criterion, and Carnot efficiency. Thus, a comparison 
of optimization of heat engines under different criteria enables to 
choose the suitable one for the best performance of heat engine under 
different conditions.
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Introduction
The second law of thermodynamics constraints the 
operation of a heat engine. It sets limits on the possible 
efficiency of the engine and thus determines the direction of 
energy flow. Sadi Carnot, a French engineer, in 1826, found 
that the maximum efficiency of a heat engine operating 
between a hot and a cold reservoir is attained only for a 
reversible process and named as Carnot efficiency,1 ηC

 = 1 - 
TC/ Th, with TC, and Th being the temperatures of the cold and 

hot reservoirs respectively and hence, depends exclusively 
on these temperatures.2 Thus, the Carnot efficiency is upper 
bound for the efficiency of any heat engine. However, Carnot 
efficiency can only be achieved through an infinitely slow 
process as required by thermodynamic equilibrium. So, 
for such a process, the power output resulting from finite 
heat transfer by heat exchangers should be practically 
zero. Thus, Carnot efficiency does not seem to have 
practical importance and constitutes a poor guide for 
the performance of real heat engines. In recent years, 
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several studies have been made in connection with the 
efficiency of realistic heat engines. The field of “Finite-time 
thermodynamics” has become a popular area of research 
since it deals with the realistic constraints in heat engines 
such as finite-time of the engine operation cycle, finite 
reservoirs, internal friction etc. These constraints, in turn, 
lead to a less efficient heat engine than Carnot engine but 
is of practical importance. The important thing is to find 
the best mode of operation of heat engines, under more 
realistic conditions than reversible ones. A number of 
different optimization criteria have been proposed for heat 
engines working under finite-time conditions.3-13 Some of 
them maximize power, work, effectiveness, of profit, and 
there are also those that minimize the loss of available 
work or entropy production. For practical purposes and to 
achieve a non-vanishing power output, the Carnot cycle 
should be speeded up and completed in a finite time. 

One optimization criterion widely used is MP criterion 
to determine the Efficiency at Maximum Power (EMP). 
This problem has attracted much attention.14-37 In 1955, 
Odum and Pikerton, for the first time, studied the efficiency 
of heat engine which is made to operate at maximum 
output power.14 Later in 1975, a better approximation of the 
performance of real heat engines was made by Curzon and 
Ahlborn,one of the first models that presents the power 
output as an optimization criterion and thus derived the 
efficiency of a heat engine known as the Curzon-Ahlborn 
(CA) efficiency, .3 Curzon and Ahlborn 
considered an irreversible model of heat engine unlike 
the reversible Carnot model by taking irreversible linear 
finite rate heat transfer between the working fluid and its 
two heat reservoirs, though it is not the only source of 
irreversibility in real heat engines. The Curzon and Ahlborn 
engine does not allow for any internal irreversibility and 
so is called “Endoreversible heat engine”.15-17 The impact 
of some other kinds of irreversibility on the performance 
efficiency of real heat engines has been studied by different 
groups. Subsequently, Gutowicz-Krusin,18 Orlov,19 DeVos,20,21 
Yan22,23 studied the irreversible Carnot like heat engines for 
EMP under different heat transfer laws unlike Newton heat 
transfer law used by Curzon and Ahlborn. Gordon24 made 
an attempt to incorporate internal irreversibility in the 
finite-time analysis of the power vs efficiency relationship 
of a thermoelectric generator and later the internal 
irreversibilities in a Carnot engine were characterized in 
terms of entropy generations25 to study the performance 
of heat engine at maximum power. The validity of ηCA as 
an upper bound for heat engines, as well as its universal 
character, were the subject of a long standing debate. In the 
linear regime, it was shown that the efficiency at maximum 
power is indeed limited by the Curzon-Ahlborn efficiency, 
which in this regime is exactly half of the Carnot efficiency.26 
Later, Schmiedl and Seifert,29 Tu ZC30 and Esposito et al.31 

investigated the problem of EMP using stochastic heat 
engines, Feynmann’s ratchet and quantum dot engines. 
The corresponding thermodynamic efficiency in all these 
models agrees with the ηCA up to quadratic terms in nc. One 
of the most profound findings is the universal behaviour of 
the EMP,32 i.e., at small relative temperature differences the 
EMP can be universally expressed in terms of the Carnot 
efficiency up to quadratic order,  
where the linear coefficient 1/2 is universal for the 
systems operating under the strong coupling condition in 
thelinear response regime.26 Beyond the linear response, 
the universal value of the quadratic coefficient isequal to 
1/8 for the strong coupling systems in the presence of left-
right symmetry.32 Esposito et al.34 found that the EMP for 
low-dissipation Carnot-like engines was bounded between 

. All these results have 
been confirmed within a minimally nonlinear irreversible 
thermodynamics framework.37-39 Subsequently, Uzdin and 
Kosloff40 studied hot quantum Otto engines and identified 
the universal behaviour of the efficiency at maximum output 
power. Sheng and Tu41 applied the generic finite-time 
thermodynamics to obtain the universality of the EMP for 
tight-coupling heat engines. Cleuren et al.42 demonstrated 
how symmetries and constraints at the microscopic level, 
combined with the fluctuation theorem, emerge at the 
macroscopic level via the expression for the EMP. The 
universality of EMP has been extensively investigated in 
literature. However, the actual thermal plants and heat 
engines may not work in maximum power regime but rather 
in the regime with slightly small power and considerably 
large efficiency, Therefore, it is of great importance to study 
the efficiency of heat engines at arbitrary power output. The 
studies in this direction were performed in Refs. [43-49] In 
above models, ηCA seems to have some sort of universality 
independent of the model details. But, in CA efficiency, the 
temperature differences between the reservoirs and the 
working substance are taken as the parameters to maximize 
the power, they do not seem easily controllable. Thus, the 
CA efficiency seems to be still controversial in these aspects. 
Regarding the verification of the validity of ηCA, Izumida and 
Okuda (IO)50,51 proposed numerical experiments performed 
by means of a Molecular Dynamics (MD) simulation52-54 
of a weakly interacting gas, which can be regarded as a 
nearly ideal gas, in a finite-time Carnot cycle. The authors 
studied the efficiency at maximum power (ηMP) of their 
model and found that ηMP does not always agree with ηCA 
rather ηMP > n, but approaches ηCA in the limit Tc → Th. IO 
asserted that this difference between ηMP and ηCA is due 
to additional heat transfers which may be missed in the 
original derivation of ηCA.3 Recently, increasing attention 
has been drawn to optimize heat engines which do not 
operate in the maximum power regime, instead, under the 
compromise between the energy benefit and the power 
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loss. To evaluate this compromise, ecological criterion (E = 
P - T0σ)4,55 and a unified optimized Ω criterion [Ω =(2η - ηC) 
P/η]7 have been proposed to optimize real heat engines, 
where P is the power output To is the environmental 
temperature, and σ is the entropy production rate. Further, 
it was proved that the Ω function  is equivalent to the E 
function (uniformly called E - Ω function).56 The important 
feature of the maximum Ω criterion is that it gives an 
optimized efficiency lying between the maximum efficiency 
and the EMP, i.e., ηCA < ηmΩ < ηC. Angulo-Brown et al.57-58 

first discussed about the possibility of thermodynamic 
optimization in some biochemical reactions within FTT 
frame work. The expansion of the optimization efficiency 
(near equilibrium) ηEΩ = 3ηc / 4 + ηC

2/ 32 + O(ηC
3), has also 

been proved from the symmetry of the Onsager coefficients, 
where the coefficient 3/4 is universal for the strong coupling 
condition in the linear response regime.56,59 Further, it has 
been shown that the quadratic coefficient 1/32 is also 
universal for the strongly coupling systems with the left 
right symmetry.56 The universality of such an efficiency 
has been investigated in different heat engines such as 
stochastic Brownian heat engines,60 Feynman ratchet heat 
engines,60 quantum dot heat engines,60 low-dissipation heat 
engines,61 classical heat engines,62 and minimally nonlinear 
irreversible heat engines63 and laser quantum heat engine64 
Another optimization criterion is Efficient power, defined 
as the product of efficiency and power (ηP), pays equal 
attention to both the efficiency  and the poweroutput, 
was first proposed in Refs. [65, 66] and further extended 
in studies.12-13,67-69

This review article will report the advances in the efficiency 
derivation of different models of heat engines. The paper 
is organized as follows. In Section 2, we discuss about 
the Maximum power criterion and its applications to 
different models of engines such as Endoreversible model, 
stochastic model, low dissipation model etc… Section 3 will 
be devoted to the description of maximum ecological (or 
Omega criterion) and its applications to the same models. 
Results of MP and ME criterion will be compared for these 
models. In section 4, numerical simulations for efficiency 
calculation under MP and ME criterion will be discussed. 
Section 5 and Section 6 presents the brief discussion on 
efficient power and multiparameter objective criterion. 
Finally, we will discuss and conclude our review in Section 
7 and Section 8.

Efficiency at Maximum Power (EMP) or 
Maximum Power (MP) Criterion
Curzon Ahlborn Engine or Endoreversible Carnot 
Cycle

The pioneer work to optimize the heat engines at maximum 
power conditions was done by Curzon Ahlborn in 19753 
keeping in view the practical importance of heat engine. 

Let us briefly discuss about Curzon Ahlborn heat engine:

Model

The T-S diagram of an Endoreversible Carnot cycle is shown 
in Figure 1. The cycle operatesbetween a heat source of 
temperature Th and a heat sink of temperature Tc. The heat 
engine considered by Curzon and Ahlborn operates in a 
Carnot-like cycle consisting of the following four processes.

Isothermal expansion process: In this process, the working 
substance absorbs heat, Q1 = α (Th − T1w) t1, from the hot 
reservoir at temperature Th during the time interval of t1 and 
thus expands, where α is heat conductivity. The effective 
temperature of the working substance is assumed to be 
T1w (< Th), which is a constant. The total entropy production 
in this process is   where  > 0 is the 
irreversible entropy production. Due to the convenient 
consideration, we take the Boltzmann factor  kB = 1 in the 
whole review.

Adiabatic expansion process: In this process, there will be 
no heat exchange with reservoirs and the entropy change 
will be zero, i.e., Q2 = 0 and ∆S2 = 0. Let  be the time taken 
to complete this process.

Isothermal compression process: In this process, the working 
substance releases heat, Q3 = β (T2w − Tc)t3, to the cold 
reservoir at temperature Tc and is compressed, where β is 
heat conductivity. The time for completing this process is 
assumed to be t3. The effective temperature of the working 
substance is assumed to be T2w (>Tc), which is a constant. The 
total entropy production in this process is  
, where > 0 is the irreversible entropy production.

Adiabatic compression process: In this process also, both the 
heat exchange and the variation of entropy are vanishing, 
i.e., Q4 = 0 and ∆S4 = 0. After a whole cycle, the working 
substance regains its initial state. As a slight deviation from 
the classical cycle analysis, we consider the four processes 
taking place simultaneously rather than sequentially.

The total time for the cycle is proportional to the time for 

Figure 1.Endoreversible Carnot Cycle
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completing the two isothermal processes, i.e., ttot = ξ (t1+ 
t3), where ξ is a constant. Since ,  > 0, the engine 
operating between the two reservoirs at temperatures Th 
and Tc is irreversible. However, as shown in Figure 2, the 
irreversible engine can be mapped onto a reversible engine70 
working between two reservoirs at effective temperatures 
T1w and T2w. This assumption can be expressed as

Q1/T1w - Q3/T2w  = 0          (1)      

So the Curzon–Ahlborn heat engine is also called the 
Endoreversible engine.

heat engines. Let us discuss some different heat transfer law 
used in literature in context with Curzon-Ahlborn engine. 
All these transfer laws will be expressible as the function 
of temperatures of the two-contact connected.

• Newton Law

The Newton heat transfer law has already been used in this 
Ref.3 It assumes that the flow of heat  is proportional to the 
temperature difference between two contacts 1 and 2 as

q=K (T1-T2)                                                                               (5)

Heat flux in solids can be well approximated by a linear 
heat transfer law. Due to its simplicity the Newton heat 
transfer law is widely used and many authors have studied 
the performance of Endoreversible engines, coolers and 
heaters based on such a linear heat transfer law.18,73-77

• Fourier Law

For the Fourier heat transfer law, the heat flux, q, is 
proportional to the difference of the inverse of temperatures 
of contacts 1 and 2 as

                                                                (6)

where K is Onsager coefficient. This type of heat transfer 
is often found in conjunction with linear irreversible 
thermodynamics, as there the driving force corresponding 
to the heat flux is nothing but the difference of the inverse 
temperatures. The Fourier heat law has been used in 
endoreversible systems,78 like the Curzon Ahlborn model 
for example. If the Fourier heat transfer law is used in 
both heat exchangers of the Curzon Ahlborn model or if 
equations (6) and (7) are replaced with Q1 = α(1/T1W - 1/Th) 
t1 and Q3 = β(1/Tc  - 1/T2W) t3, respectively, through similar 
calculations, Chen and Yan22 derived the EMP to be

                                                                       (7)

with .

Radiation

Hot body like sun emits EM radiation and that too can 
serve as a source of heat for heat engines. Radiative heat 
transfer is typically described by the Stefan-Boltzmann 
law for black body radiation and the heat flux between 
two radiating bodies attemperature T1 and T2 is given as

,                                                        (8)

The coefficients K are proportional to the Stefan-Boltzmann 
Constant, the emittance of the two radiating bodies and 
geometry factors.

Dulong-Petite

There are some physical situations where the heat transfer 
between two sub-systems involves conductive as well as 
radiative components. A combined conductive-convective 
and radiative heat transfer can be described in a simplified 

Figure 2.Endoreversible assumption

Optimization

The net work delivered by the Curzon–Ahlborn heat engine 
is given as W = Q1 − Q3. The power output for heat engine 
is defined as P = W/ ttot. To optimize the engine, power is 
maximized w.r.t T1w and T2w, i.e., by setting ∂P/∂ T1w = ∂P/ 
∂T2w = 0 and we obtain

                                                           (2)

The efficiency is defined as n = W/Q1. Using Eq. (1), we have

                                                            (3)

By making use of Eq. (2) in above expression, we obtain 
Curzon Ahlborn (CA) efficiency as

                                                                         (4) 

This relation has in fact been obtained by Novikov71 and 
Chambadal72 when they investigated the efficiency of atomic 
power stations. For the historic cause, Eq. (4) is still called 
the Curzon–Ahlborn efficiency in most literature.

Endoreversible Systems with Different Heat Transfer Laws15

The Curzon Ahlborn engine showed the irreversibilities 
due to finite heat conduction and it directly influenced 
the behavior of Endoreversible systems. Newtonian 
heat conduction was chosen to model the heat transfer 
between engine and thermal reservoirs. In general, these 
heat transfer laws can be much complicated and thus 
drastically influence the performance of Endoreversible 



41
Aneja P

J. Adv. Res. Mech. Engi. Tech. 2020; 7(3)

ISSN: 2454-8650
DOI: https://doi.org/10.24321/2454.8650.202006

fashion and is called Dulong-Petit law as

q = K (T1 - T2)
n                           (9)

where K is a proportionality constant. The value of the 
exponent is usually in the range between 1.1 and 1.6. 
Angulo-Brown and Paez-Hernandez79 investigated the 
Curzon Ahlborn model using Dulong Petit heat conduction 
law with n = 5/4 and Chen and Yan et al.80-82 also examined 
the forward and reverse Carnot cycles with Curzon Ahlborn 
model for arbitrary n. 

Generalized Heat Transfer Law

Some authors generalized the above discussed heat transfer 
laws and analyzed systems obeyinga non-linear heat transfer 
law of the form 

q = (K1 T1
n - K2 T2

m)                                                               (10)

Which includes the Newton (n=m=1), Fourier (n=m=-1), 
and radiative (n=m=4) heat transfer laws as special cases. 
The influence of the non-linear heat transfer law q = K (T1

n-
T2

n) on the Curzon-Ahlborn model was studied by Chen22, 
Gordon24 and Nulton et al.83

Stochastic Heat Engines

In 2008, Schmiedl and Seifert29 constructed a stochastic 
heat engine by using an optical trap to control a Brownian 
particle to perform a Carnot-like cycle and thus derived the 
EMP within the context of stochastic thermodynamics.84-86

Model

The controlled particle performs the following four 
processes similar to Carnot-cycle: 

Isothermal expansion process: During this process, a certain 
amount of heat Q1 is absorbed from the hot reservoir 
at temperature Th by the particle embedded in it. The 
governing potential V(r, λ1 (τ)) is time-dependently varied 
by coordinating the intensity of the optical trap during 0 < 
τ <t1, where λ1(τ) represents the protocol of coordination. 
There will be an entropy change during this process.

Adiabatic expansion process: During this process, there 
is no heat exchange as well as no entropy change i.e Q2 = 
0 and ∆S2 = 0. This is an instantaneous process where the 
temperature is switched from Th to Tc at time τ = t1 The 
position distribution of the Brownian particle does not 
change during this step. To keep the distribution unchanged, 
the potential also needs a corresponding sharp change. 

Isothermal compression process: During this process, the 
particle is embedded in a cold reservoir at temperature 
Tc and a certain amount of heat Q3 is released to the cold 
reservoir. The potential is time-dependently changed during 
t1 < τ < t1 + t3. The protocol of coordination is denoted by 
λ3(τ). Again, in this process, there will be net change in 
the entropy.

Adiabatic compression process: Similar to the adiabatic 
expansion process, this is also an instantaneous process and 
there will be vanishing entropy change and no exchange 
of heat with the reservoir, i.e., Q4

 = 0 and ∆S4 = 0.  After 
a whole cycle, the position distribution of the Brownian 
particle returns to its initial distribution. Thus, the changes 
of the total energy and the entropy vanish.

The key assumption is that the position distribution p(r,t) 
of the Brownian particle in an isothermal process at 
temperature T satisfies the stochastic dynamics as ∂p(r,τ)/ 
∂τ = - . j, where j and µ. ( V + T )p(r,τ), is the mobility 
tensor. Within stochastic thermodynamics frame work, the 
irreversible entropy production in the isothermal process 
can be expressed as 

                  (11) 

where µ-1 is the inverse of the mobility tensor, ti and 
tf represent the start and the end time of the process, 
respectively, T is the temperature which is equal to Th and 
Tc for the isothermal expansion process and the isothermal 
compression process, respectively and λ(τ) represents 
the protocol and equals λ1(τ) and λ3(τ) for the isothermal 
expansion process and the isothermal compression process, 
respectively. For a given protocol, it is observed that 
minimum irreversible entropy production in the isothermal 
process has the form

                                                          (12)

where A is the irreversible action named by Schmeild and 
Seifert.29

Optimization

Similar to the thermodynamics analysis in CA engine, the 
expressions of power and efficiency for the stochastic heat 
engine can be given as 

,                                                  (13)

                                                (14)

Power maximization can be done by first minimizing ∆S1
ir 

and ∆S3
ir with respect to the protocols for given time t1 

and t3, which gives the optimized protocols λ1
*(τ) and 

λ3
*(τ) After that, power is maximized with respect to time 

t1 and t3 for the optimized protocols. With reference to Eq. 
(12), the minimum irreversible entropy productions in two 
isothermal processes can be expressed as min{∆S1

ir} = A1/t1 
and min{∆S3

ir} = A3/t3. Substituting them into Eq. (13) and 
maximizing the power with respect to t1 and t3, we obtain 
the optimized time as

,                                        (15)

By substituting the above equation and the minimum 
irreversible entropy productions (Eq. (12)) into Eq. (14), 
we can derive the EMP, also called Schmeild and Seifert 
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efficiency (ηss), as

,                                                                  (16)

where γSS= 1/(1+√A3/A1). In particular, when aharmonic 
potential is used to represent the effect of the optic trap 
i.e. A1  = A3, the above equation is reduced to 

,           (17)

Another model of stochastic heat engine was studied in 
Ref. [87] in which authors had investigated the stochastic 
thermodynamics of a two-particle Langevin system. The 
model consists of two Brownian particles in one dimension 
which are trapped by a harmonic potential and driven by a 
linear external force. Two particlesare in contact with a heat 
bath at different temperatures. This temperature difference 
induces a heat flow, and thus enabled the system to work 
against the external force. The system act as an autonomous 
heat engine performing work against the external driving 
force. The derivation of EMP for this engine is found to 
be same as CA efficiency which is the universal result of 
Endoreversible heat engines but this engine operates in 
non-equilibrium condition and thus not Endoreversible.

Feynman’s Ratchet as a Heat Engine

To explain the second law of thermodynamics, Feynman 
introduced an imaginary microscopic ratchet device in his 
famous lectures.88 Feynman’s ratchet, as a parental model, 
was investigated by many researchers.89-92 A related study 
of interest is efficiency at maximum power of Feynman 
ratchet since the processes of heat and work transfer are 
assumed to occur at finite rates, thus generating a finite 
output power.In particular, EMP of Feynman’s ratchet was 
obtained by optimizing the external load for a given internal 
parameter in Refs. [90-92] which was investigated further 
by optimizing both the internal parameter and the external 
load of the ratchet device.30 The main ideas and findings of 
the work for EMP on this system will be discussed here.30 

The ratchet is shown below in Figure 3. 

is eventually transferred as heat ϵ to the cold reservoir  
through the interaction between the ratchet and the 
pawl. Similarly, in the backward step, energy ϵ should be 
accumulated from the cold reservoir to lift the pawl high 
enough so that the ratchet can slip. The rate to get this 
energy is

                                                  (19)

In the backward process, the work done by the load is Zθ. 
This energy and the accumulated energy ϵ are returned 
to the hot reservoir in the form of heat. Using the rates of 
forward and backward rotations, the power of Feynman’s 
ratchet system is given as

                                                                                               (20)

By assuming that the heat leakage due to the kinetic energy 
vanishes (perfect ratchet device), the net rate of heat 
absorption from the hot bath via the potential energy93-94 
may be expressed as:

              (21)     

Therefore, the efficiency can be expressed as

          (22)

It is to be noted that P depends on the internal parameter ϵ 
and the external load Z. It is easy to tune the external load 
Z. Here, both ϵ and Z are optimized to achieve the maximum 
power. After maximizing power, we obtain optimized values 
ϵ* and Z*, which in turn, substituted in Eq. (22) to obtain 
efficiency at maximum power (ηT). The EMP for Feynman’s 
ratchet device is

              (23)

It is observed that above result is slightly higher than 
obtained ηCA by Curzon and Ahlborn for macroscopic 
heat engines and ηSS obtained by Schmiedl and Seifert for 
stochastic heat engines. Efficiency at maximum power of 
Feynmann ratchet have been studied further as hot and cold 
ratchet with numerical examples,95 by using thermoelectric 
transport theory96 etc. The Feynman-Smoluchowski (FS) 
ratchet88,97 is studied in the high temperature regime and 
thus universality of EMP (see section below) up to second 
order is reproduced through non-linear approximation in 
the output power.98

Universality of EMP
One of the most profound findings is the universality of 
the EMP32 and Van den Broeck, Esposito and Lindenberg 
had done remarkable contribution to study the universal 
behaviour of EMP. Firstly, Van den Broeck26 proved that, in 
linear regime, more precisely to linear order in ηC, EMP is 
indeed limited by the CA efficiency, and is exactly half of 
the Carnot efficiency, as η ≤ ηCA = ηc/2 + O(ηc

2 ). The upper 

Figure 3.Feynman’s Ratchet Device

,                                (18)

where r0 is a rate constant with units of s-1. A part of this 
heat is converted into work Mθ, and the remaining energy 
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limit is reached for a specific class of models, namely, those 
for which the heat flux is strongly coupled to the work-
generating flux. Later, in 2009, Esposito et al.32 constructed 
a general heat engine and verified that the EMP exhibits 
universality up to a quadratic order term of ηC for the 
strong coupling system in the presence of a left–right 
symmetry. Thus, when EMP is investigated at small relative 
temperature difference (or near equilibrium), it has been 
observed that EMP in all cases yield similar terms up to 
second order as

,                                       (24)

where the linear coefficient 1/2 is universal for the systems 
operating under the strong coupling condition in the 
linear response regime. Beyond the linear response, the 
universal value of the quadratic coefficient is equal to 1/8 
for the strong coupling systems in the presence of left-right 
symmetry.32 The above universality predictions have been 
confirmed in a number of heat engine systems involving 
classical and quantum regimes.33-34,99-102

EMP Bounds and Low Dissipation Heat Engines

In Endoreversible models,3,103-104 the working medium is 
assumed to be internally reversible and also there are 
no heat leaks between the heat baths. The source of 
irreversibility is solely due to the finite rate of heat transfer 
between the working medium and the external thermal 
baths. However, CA efficiency is not a universal result, and 
also it is neither an upper nor a lower bound. Recently, 
heat engines have been studied under another type of 
expansion, namely the so-called low-dissipation limit,34 
which departs from a first order approximation in the 
entropy generation of irreversible heat devices. In this limit, 
not the thermodynamic forces, but rather the operation 
times for the various stages of the engine are the central 
quantities. It is assumed that reversible operation is attained 
when these times go to infinity. Maximum power is achieved 
by optimization of the operation times. It was shown that 
the Curzon-Ahlborn efficiency is reproduced for a specific 
optimization procedure of this type. The authors in Ref.
[105] presents a general thermodynamic frame work  for 
a work producing engine, which cyclically runs through a 
number of stages j = 1,..., N such that the system can be in 
contact with ideal reservoirs of heat and particles (including 
in particular an adiabatic transformation with no exchange 
of energy or particles) during these stages. In accordance 
with the second law, the entropy change in a system is (in 
each step of the cycle) the sum of the entropy exchange 
with the reservoir and a non-negative entropy production 
term given as

,                                                        (25)

where  

and 

Let the durations of each stage j is τj. In the limit τj→∞ 
 j, the corresponding infinitely slow process becomes 

reversible, hence ΔiSj → 0,  j. By operating at a finite time, 
but still close to the reversible limit, dissipation increases 
as the inverse of these operation times and is called weak 
dissipation or Low dissipation (LD) limit, i.e.,

              (26)

This type of dependence has been observed in a number 
of explicit model calculations.37-39 It also appears as a lower 
bound in more general discussions.106-107 The assumption is 
expected to be valid if the set-up (system plus contact to 
reservoirs) has a smallest non vanishing relaxation time. 
The parameters σj incorporate information such as system 
and contact characteristics and operational prescription. 
All irreversibilities (dissipations) are incorporated in the 
parameters, which play the same role as the thermal 
conductances of the CA-model. This framework can be used 
to investigate various types of thermodynamic machines. In 
Ref. [34] authors consider a minimal and generic model of 
a standard Carnot engine, operating between a hot and a 
cold reservoir at temperature Th and Tc  (<Th). We will refer 
to the corresponding stages as j =h and j = c. The other 
stages are adiabatic, i.e., Δe Sj = 0, for j ≠ h and j ≠ c.  Power 
is maximized as a function of the operation times i.e. τj and 
then solving the equation  for operational times and 
then efficiency at maximum power is then calculated as

                        (27)

For “symmetric dissipation”, more precisely σc/
σh = 1 one recovers the Curzon-Ahlborn efficiency 

. Further, the limits σh/σc → 0 and   
σc/σh → 0 provide a lower and upper bound, respectively 
for the efficiency as:

                           (28)

The above analysis includes the simpler case of an 
Endoreversible 4-stage engine, presented in Ref.[34] 
These results are consistent with those obtained by Chen 
and Yan22 based on the Endoreversible assumption and 
those obtained by Schmiedl and Seifert29 for stochastic 
heat engines which in fact also satisfy the low-dissipation 
assumption. The important result of above study is that EMP 
is exactly the CA-value when these constant (dissipation 
constants) are equal. The CA efficiency is reproduced 
without invoking any specific heat transfer law. So, one can 
say that taking the equality of the irreversibility constants 
as a symmetry condition play the same role as the left-right 
symmetry of the fluxes in the strong coupling systems. 
Thus, universality of efficiency at maximum power (up 
to second order) emerge as a general property linked to 
symmetric conditions. The authors have generalized the 
above scenario for a multiple bath heat engine which means 
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an engine exchanging heat with more than two baths. The 
analogue of the Carnot efficiency (reversible efficiency) as 
the upper bound for this efficiency, will be denoted by ηrev 
The analogue of the Eq. (28) which describe the bounds 
for a heat engine with multiple baths in low dissipation 
limit can be obtained as

                                                   (29)

Thus, low-dissipation limit should generically describe 
correctly —at least to first order— the irreversible correction 
to the reversible limit. The endo-reversible approximation 
on the other hand is a system-dependent approximation, 
based on the assumption that the dissipation can be 
neglected in some of the stages (e.g., the adiabatic phases), 
which may or may not be true.

Wang et al.37 showed that the maximum power output 
corresponds to minimizing the irreversible entropy 
production in two “isothermal” processes in the Carnot-like 
cycle. They argued that the low-dissipation assumption is 
reasonable in the long-time limit, because the “isothermal” 
process is quasi-static in the long-time limit, and the 
irreversible entropy production should be vanishing. 
However, it must be convergent in the short-time limit. Thus, 
it is necessary to correct the assumption for finite time. 
The authors emphasized mainly on the assumption that the 
rate of irreversible entropy production in an “isothermal” 
process is a quadratic form of heat exchange rate between 
the working substance and the reservoir and thus minimum 
entropy production for a given time is given as

                                      (30)

                                                     , (  = h, c)

where  can be regarded as the thermal conductivity. 
Although this assumption is different from the Endoreversible 
assumption or low-dissipation assumption, but still Eq. (28) 
is true for this assumption as well. Thus, the low-dissipation 
assumption is a sufficient condition but not necessary 
condition for the existence of two bounds  ηc/2 and ηc/(2-ηC).     

A minimal nonlinear irreversible model of heat engine was 
proposed in Ref.[38] which is described by the extended 
Onsager relations, where a new nonlinear term which 
corresponds to power dissipation is added to the heat flux 
from the hot reservoir in the standard Onsager relation and 
no other nonlinear terms are assumed. The proposed model 
is a natural and minimal extension of the linear irreversible 
heat engine. The efficiency at maximum power for this 
model is upper bounded by ηC/(2-ηC). To demonstrate the 
validity of above assumption, it has been shown that the 
finite-time Carnot cycle model, called the low-dissipation 
Carnot engine, can be described by the extended Onsager 
relations. The relation between the low-dissipation models 
and the minimally nonlinear irreversible models under the 
symmetric dissipation condition was further investigated 

in Ref.63 Later, based on some improvements of the above 
models,108-114 many researchers had derived the useful 
results for the general expression of EMP and its bounds.

Quantum Dot as a Heat Engine and Non-universality of 
EMP

Quantum dots (QDs) are of significant importance because 
they are ideally the objects with zerodimension and with 
discrete electronic states, and thus can be used as perfect 
energy filters which only allow electron transport at a single 
energy. Because of their potential use in high efficiency 
devices, the performance of QD heat engines has been 
studied extensively by theorists.31,33,115-120 QD heat engine 
consists of a single level quantum dot, with orbital energy 
ϵ, and it exchanges electrons with a cold left lead at 
temperature Tl and chemical potential μl, and with a hot 
right lead at temperature Tr and chemical potential μr (Figure 
4). The quantum dot is either empty (state 1) or filled (state 
2). The exchange of electrons between the leads through the 
dot will be described by a stochastic master equation,121-123 
and the corresponding thermodynamic properties can be 
obtained from stochastic thermodynamics. When operating 
close to equilibrium, Carnot efficiency will be achieved, 
while Curzon-Ahlborn efficiency will be reproduced at 
maximum power conditions in the linear regime. In 
particular, the efficiency at maximum power will be found 
to be η = ηC/2+ηC

2/8 +.. with the coefficient of ηC
2, again 

equals to 1/8. This provides further support for the thesis 
of universality for this value, especially since the regime 
of maximum power is found to lie entirely in the quantum 
regime. The expansion also features the expected coefficient 
1/2 for the linear term.

Figure 4.Quantum dot engine

However, it has been observed that this universality may 
break down for the quantum dot heat engine depending 
on the constraints imposed, though the tight-coupling 
condition remains applicable in the sense that the heat 
flux is directly proportional to the work-generating flux.118 
When the energy of quantum dot relative to one of the 
lead’s chemical potential is fixed and the other is varied, 
the 1/2-universality is observed with non-universal second-
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order coefficient depending on the value of the fixed 
chemical potential, as expected. On the other hand, when 
the energy of quantum dot is varied with fixed chemical 
potentials of both leads, we observe a violation of the 
robust 1/2 universality in near equilibrium expansion of EMP 
such that the linear coefficient turns out to be unity. Thus, 
EMP will be much higher compared to the conventional 
cases. Thus, universality of efficiency requires an additional 
constraint besides the tight-coupling condition, which 
turns out to be the applicability of the linear irreversible 
thermodynamics.26,38,96,124-127

Efficiency at some Arbitrary Power

In recent years, the universality of EMP has been studied 
extensively in the literature. However, in actual practice, 
the heat engines may not work in the maximum power 
regime but rather in the regime with slightly smaller power 
than the maximum power, yet at a larger efficiency than 
the EMP. Therefore, it is of great importance to study the 
efficiencyof heat engines at arbitrary power output. The 
first steps inthis direction were performed in Refs.[43-
46,49,128] In Ref.[47] the minimally nonlinear irreversible 
heat engines at arbitrary power are studied and the lower 
and upper efficiency bounds under the tight coupling 
condition for different operating regions have been 
deduced. In the region of higher loads, a small power loss 
away from the maximum power results a significant large 
gain in efficiency. Hence, to achieve higher efficiency, it is 
advisable to operate the heat engine in a regime, which 
is a slight deviation from the maximum power regime. 
The study of thermoelectric quantum heat engines under 
arbitrary power are presented in Refs.43,128 The upper bound 
of efficiency equals to the Carnot efficiency at zero power 
output but decays with increasing power output. By using 
approach of linear irreversible thermodynamics in Ref.[48] 
universal upper bound of efficiency of steady state heat 
engines working at arbitrary power has been derived. 
This study also highlighted that a slight deviationfrom the 
maximum power conditions can result in higher efficiency, 
thus making engines more economical.In this context, we 
recall that any regime in which the efficiency is greater than 
the efficiency at maximum power and the power is greater 
than the power at maximum efficiency is considered as an 
optimum operating regime in FTT.

Maximum Ecological (ME)/ Maximum Omega 
(MΩ) Criterion
Besides MP Criterion, used as the criterion of merit for the 
best performance of realistic heat engines, it is possible 
to use other optimization criterion that makes the best 
compromise between’ power output and “lost power.” 
This criterion has a long-range purpose in the case of 
being consistent with ecological targets while MP criterion 
has been recognized for short term goals129 as the results 

showed that4 the use of the MP criterion brings about 
a high-entropy production. Thus, Angulo-Brown had 
suggested an “ecological” criterion4 for the best mode of 
action of CA type engine which was further improved by 
Yan.55 It consists of optimizing the function E = P-Tc σ, which 
represents the best compromise between power P  and 
the rate of entropy production σ and the temperature of 
the cold reservoir Tc, and Tcσ is named “power loss.” The 
ME criterion provides approximately 80% of the maximum 
power, but with entropy production of just 30% of the 
entropy produced by the MP criterion. In general, ecological 
function is defined as55

E = P-Toσ,                                                                                  (31)

where T0 is the environment temperature. For a CA engine 
operating between two reservoirs at a high temperature Th, 
and a low temperature TC, using Eq.(31) and the procedures 
similar to that of Ref.[4] we can conclude that the efficiency 
at maximum E is given by

                                (32)

In the limit Tc → To, above equation becomes

                                                        (33)

Some authors have also suggested entropy production 
minimization (MEP Criterion). But, Angulo-Brown had 
successfully showed that the results with ME criterion, 
when compared with those obtained by minimum entropy 
production (MEP) criterion129 for similar cycle periods, 
there is a reduced entropy production and in addition, 
improves power production by about 10%. Also, the 
efficiency corresponding to ME criterion will be an average 
of Carnot and CA efficiencies. In addition, there is a unified 
optimization function Ω = (2η –ηmax )P/η (Ω function)7, which 
is defined by considering a compromise between the useful 
energy and the lost energy, where is the maximum efficiency 
of a heat engine. It was proved that the Ω function is 
equivalent to the E function (uniformly called E-Ω function) 
as shown56, where the ecological function E can be further 
rewritten as

E = P - Tcσ                 (34)

Using σ = Q̇/Tc - Q̇h/Th, P = Q̇h - Q̇c, ηc= 1-Tc/Th, we obtain

,

,

E = Ω.                                                                                     (35) 
The implementation of this criterion to heat engines only 
requires the knowledge of power output P and efficiency 
η, is independent of environmental parameters and also 
does not require the explicit evaluation of the entropy 
generation. These two criteria have a wide range of 
applications in many fields.130-137 Results show that in all 
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cases the E - Ω criterion predicts an optimum operational 
regime which is intermediate between those arising from 
maximum useful energy and from maximum efficiency. In 
other words, any regime in which the efficiency is greater 
than the efficiency at maximum power and the power is 
greater than the power at maximum efficiency is considered 
as an optimum operating regime in FTT. It is found that 
for the E and Ω functions described above, the efficiency 
at optimum conditions has the same form expressible as

                                                     (36)

and this optimized efficiency lying between the maximum 
efficiency and the EMP, i.e.,  (CA Model).

Universality of Efficiency, Bounds and its Comparison 
with EMP

EMP is verified to be universal up to quadratic order in ηC for 
the strong coupling systems in the presence of a symmetry 
condition32. It has been observed that the efficiency at 
unified trade-off function (maximum Ω-criterion)/ME 
criterion also show universality up to quadratic term in ηc

56, 
i.e. ηmΩ = 3ηc/4 + ηc

2/32+O(ηc
3). Zhang et al. had investigated 

the efficiency of non equilibrium heat engines based on 
the master equation model of heat engines and verified 
that the efficiency at MΩ-criterion/ME criterionexhibits 
universality up to quadratic order in the deviation from 
equilibrium for the strong coupling system in the presence 
of a symmetry condition. This kind of universality is not 
exclusive of the maximum power regime. It is possible to 
obtain other performance criteria generating optimized 
efficiency with the same kind of universality which also 
behave as upper bounds. This universal behaviour of 
maximum Ω-efficiency was already being observed in many 
models of heat engines such as classical heat engines62, 
stochastic Brownian heat engines60, Feynman ratchet heat 
engines60, quantum dot heat engines60, low-dissipation 
heat engines61, and minimally nonlinear irreversible heat 
engines109, and others.132,134-135,138 We consider here the 
results for some models of heat engines already being 
discussed for MP regime and their comparison with 
maximum power efficiency. Firstly, Ω function is obtained 
for the considered models of heat engines, and then, the 
efficiency under maximum Ω  conditions can be obtained, 
denoted as ηmΩ.

• For the Endoreversible Curzon-Ahlborn model, 
the efficiency at maximumis Ω given by Eq. (36) as 

, which can be expanded as

                                                 (37)

• For the stochastic heat engine model by Schmiedl 
and Seifert29, the algebra is straight-forward although 
cumbersome and the result is given by

                                                                              (38)

where

Which can be expanded as

                                                  (39)

• For Feynman ratchet and pawl model considered by 
Tu30, the algebra is also straightforward and we get

                   (40)

• Similarly, for the nano-thermoelectric engine model 
reported by Esposito et al.31, the efficiency at maximum 
power Ω - conditions can be expanded as

                       (41)

It can be seen that all four models reproduce the same 
efficiency up to quadratic order when expanded near-
equilibrium (small temperature difference) as coefficients  
3/4 and 1/32 appear in all linear and quadratic terms and 
model-dependent differences can be observed at third and 
higher terms. The 3/4 coefficient has been also observed for 
a non-isothermal134 and isothermal heat engine59within the 
linear irreversible approach in the limit of strong coupling 
when the efficiency is calculated under maximum ecological 
conditions. The results of the optimized efficiencies ηmΩ are 
plotted in Figure 560, which shows that all curves merge 
together at small temperature differences (as clear from 
near-equilibrium expansion) while deviations (below or 
above the -value) are appreciable only for relative 
large temperature differences. From Figure 5, it is also to 
be noted that the efficiencies under maximum Ω-function 
behave in the similar manner as the efficiencies under 
maximum power for the considered models, thus sharing 
the same kind of universal behaviour. Also, in each case 
the maximum Ω-function yields higher efficiencies, closer 
to the Carnot values. In fact, it is easy to check numerically 
the exact results of the efficiency at maximum Ω can be 
approximated by the semi-sum of the Carnot value and the 
exact results of the EMP, ηmΩ=(ηMP + ηc)/2 (semisum rule).4,59

The Ω function is also applied to the unified low-dissipation 
(LD) model for heat engines and the corresponding efficiency 
and its bounds are obtained under general and symmetric 
conditions.61 In LD model, the entropy production during 
the hot (cold) heat exchange process behaves as Σh/th (Σc/tc), 
where th and tc denotes the corresponding time durations 
and Σh and Σc are dissipation coefficients which account 
for irreversibility details. Here, infinite time limit recovers 
the reversible case. The MP criterion when applied to LD 
models, allows recovering the CA efficiency for symmetric 
dissipation, without assuming any specific heat transfer law 
or the linear-response regime. The authors also derived 
the lower and upper bounds for the efficiency at maximum 

(                      )
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power which can be attained under extremely asymmetric 
dissipation limits. Similarly, Ω - function is maximized for 
LD model to obtain lower and upper bounds of efficiency 
by considering, respectively, the asymmetric limits Σh/Σc 
→ 0 and Σh/Σc→ ∞:

                                        (42)

Under symmetric dissipation i.e. Σh/ΣC→ 1, efficiency 
obtained is same as obtained by Angulo et al.4,139using 
the ecological optimization for Endoreversible models 
and is given as

Figure 5.Comparison of efficiency under MP criterion 
with efficiency under MΩ criterion as a function of 

Carnot efficiency for indicated models60

         (43)

The Ω-optimization for minimally nonlinear heat engines 
is conducted in Ref.[140] The results show that under 
tight-coupling conditions, the efficiency and its bounds 
in asymmetric dissipation limits are the same as those 
obtained by de Tomas et al.61 for low dissipation heat 
engines. The efficiency bounds for heat engines under non 
tight-coupling conditions are also analyzed.

Efficiency Study using Numerical Simulation
CA efficiency has been validated through many theoretical 
studies6,26-28,141 ranging from the heat engines working under 
the linear regime26-28 to the heat engines powered through 
a quantum mechanism,142 thus, suggesting a universal 
nature of CA efficiency. However, to test the validity of CA 
efficiency experimentally, Y. Izumida et al.50-51 performed 
some numerical experiments by means of Molecular 
Dynamics (MD) simulations of a weakly interacting gas, 
which can be treated as a nearly ideal gas, in a finite-time 
Carnot cycle. The authors studied the efficiency at the MP 
regime, ηMP, and found that ηMP > ηCA but approaches ηCA 
in the limit Tc → Th. The assertion given for this difference 
between ηMP and ηCA is the additional heat transfers which 
may be missed in the original derivation of ηCA. Let us 
discuss in detail some of the MD simulation experiments 
performed for different systems to discuss their efficiency 
under different operating regimes.

Ideal-gas like system

Model

This model is originally developed and used by Y. Izumida 
and K. Okuda.50 The model consists of a N hard disc particles 
(weakly interacting particles) of diameter d and mass m, 
confined in a two-dimensional cylinder with rectangular 
geometry and the collision between hard-disc particles is 
assumed to be perfectly elastic. The cylinder is fitted with 
a piston moving back and forth at a constant speed u which 
is taken to be a control parameter. The system follows four 
steps to complete a single quasi-static Carnot cycle. The 
usual quasi-static Carnot cycle of an ideal gas consists of 
four processes: 

a. Isothermal expansion process (V1 → V2), 
b. Adiabatic expansion process (V2 → V3), 
c. Isothermal compression process (V3 → V4),
d. Adiabatic compression process (V4 → V1),

Where Vi’s are the volumes of the cylinder at which we 
switch each of the four processes as shown in the Figure 
6(a). When we fix Th, Tc, V1, and V2, we can easily determine 
the volumes V3, and V4 since we assume an ideal gas as the 
working substance. For an adiabatic quasi-static process 
with an ideal gas as a working substance, we have the 
relation TVγ-1= constant. Here γ refers to the ratio of the 
specific heat capacity at constant pressure to that at 
constant volume. For a two-dimensional ideal gas, γ is 2. 
Therefore, V3 =(Th/Tc) V2 and V4 = (Th/Tc) V1 for the two-
dimensional case. In case of finite-time cycle, we assume 
that the right wall of the cylinder is a piston and moves 
back and forth at a constant speed u. For this model, this 
u is taken as a unique and controllable parameter. We also 
assume that each process is switched at the same volume 
as in the quasi-static case.

Figure 6.Model description of 2D heat engine 

Simulation50,143

Defining (x, y) coordinates for cylinder shown in Figure 6(b), 
let the piston move along the x-axis at a finite constant 
speed u. Here, the x - length and the y - length of the 
cylinder are expressed as l and L, respectively. Then the 
volume Vi (i = 1,...4) of the cylinder at which each of the 
four  processes  are switched (Figure 6(a)) becomes Vi

 = 
LIi, where Ii is the x-length of the cylinder at the switching 
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volume Vi. If the process (A) begins at time t=0, then the 
volume V(t) of the cylinder at time t is given as

                (44)

in the expansion processes (A) and (B) and

  (45)

in the compression processes (C) and (D).

The collision of a particle with the piston can be classified 
into two categories: 

• Piston moving forward (expansion process) and 
• Piston moving backwards (compression process).

Piston Moving Forward

Denote v0x, vfx and uf the initial speed, final speed of the 
particle and final speed of the moving piston respectively. 
Conservations of linear momentum and kinetic energy 
give the relations

                              (46)

and

,                     (47)

Where m and M are mass of the particle and piston 
respectively. From these equations, we obtain the relation

                                       (48)

Since we assume that the mass of the piston is very large 
compared to the mass of the colliding particle, (i.e M >> 
m), the speed of the piston does not change appreciably 
due to collision with a single particle. Therefore, the final 
speed of a colliding particle with the piston becomes

vfx ≈ 2u - v0x                                                      (49)

The change in kinetic energy (∆KE) of a colliding particle, 
which is the difference between its final and initial kinetic 
energies, is

                        (50)

Since v0x must be greater than u, Eqn. (50) tells us that the 
colliding particle loses energy, thereby transferring it to the 
forward moving piston.

Piston Moving Backward

When the piston is moving backwards (compression 
process) then two situations arise for the particle collision 
with the piston. The first and obvious one is when a particle 
moves to the right. The second is that, while a particle 
moves to the left, collision occurs as long as the speed of 
the piston is greater than that the particle. We will see 
both cases as follows.

If a particle moves to the negative x-axis, the laws of 
momentum and energy conservations can be written as

,                                   (51)

and

                                      (52)

Again, using the fact that M>>m, the final speed of a 
colliding particle obtained from the above two equations is

vfx ≈ -(2u + v0x)                                       (53)

and the corresponding change in the particle’s kinetic 
energy is

ΔKE = 2mu(u + v0x)                         (54) 

If a particle moves towards the positive x-axis,using the laws 
of conservation oflinear momentum and kinetic energy, we 
find the final speed of a colliding particle is

vfx≈-(v0x  + 2u),                                                    (55)

and the corresponding change in kinetic energy is

ΔKE = 2mu(u + v0x)                                                              (56) 

Thus, it can be concluded from above discussions that, 
if a particle with the velocity  collides with 
the piston whose x-velocity is ±u, its velocity changes to 

. Therefore, the particle does microscopic 
work of amount  against 
the piston. To simulate the heat reservoirs for isothermal 
processes, thermal wall is at desired temperature with the 
length S at the left bottom of the cylinder. The thermal wall 
has the following feature:144-145 The collision of a particle 
with the thermal wall changes it velocity stochastically to 
the value governed by the distribution function

                                  (57)

(-∞<vx < + ∞, 0 < vy
 < + ∞, Ti (i = h in (A), c in(C))), where kB 

is Boltzmann constant. The thermal wall may be understood 
as follows. Imagine a large particle reservoir thermalized 
at a temperature Ti  (i = h or c) instead of the thermal wall 
and assume that if a particle in the cylinder goes out into 
the particle reservoir, another particle from the particle 
reservoir enters into the cylinder. This consideration can 
be seen as the particle entering in to the cylinder from the 
particle reservoir obeys the velocity distribution function 
proportional to the Boltzmann factor multiplied by vy as 
given in Eq.(57) after normalization. This thermalizing wall 
guarantees that the particle velocities in the static system 
are governed by Maxwell-Boltzmann distribution with 
temperature Ti:

                                   (58)

The heat flowing from the thermalizing wall into the system 
can microscopically be calculated by the difference of the 
kinetic energies before and after the collision with the 
thermal wall.  The microscopic heat as well as microscopic 
work during the simulation can be summed up. At the walls, 
the reflecting boundary condition for colliding particles are 
used except for the piston and the thermal wall. 
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Simulation Results

The simulation technique used is event driven molecular 
dynamics simulation. The values used in Ref.[50] are N = 
100 particles with diameter, d = 0.01 and mass, m = 1 in 
the system with L = 1, l1 = 1, l2 = 1.5, Th = 1, Tc = 0.7, kB = 1 
and length of the reservoir, S = 0.5. All parameters except Tc 
are fixed in all simulation. As time passes, thermodynamic 
variables should draw a steady cycle independent of initial 
states. Figure 7, shows the temperature-volume diagram 
for the steady cycle at u = 0.01 and u = 0.001, where kBT 
is determined by summing up the kinetic energy of all 
particles and then using the equipartition principle. From 
this figure, we can see that in the isothermal expansion 
(compression) process, the temperature approaches a 
steady value lower (higher) than Th (Tc) at u = 0.01. This 
can easily be understood: For a finite u, heat should flow 
into the system at a finite rate to maintain the steady 
cycle. Therefore, the finite difference of the temperatures 
between the system and the heat reservoir is necessary. 
The cycle for u = 0.001 almost agrees with the quasi-static 
Carnot cycle of an ideal gas. This implies that considered 
system of the hard-disc particles closely approximates an 
ideal gas system. We can see from the figure that as the 
speed of the piston gets very small, the molecular dynamics 
simulation result approaches to that of the quasi-static 
result. This result ensures that the model can describe the 
ideal gas model heat engine to a good accuracy.

Figure 7.Temperature-volume (T -V) diagram for the 
steady cycle at u=0.01 and u=0.001. Solid line is for 

quasi-static Carnot cycle50

Figure 8.Power (P) vs piston speed (u)50

Figure 9.The efficiency at the maximal power nmax vs Tc
50

The efficiency η = Wtotal/Qh,total and the power P = Wtotal/τ are 
calculated, where Wtotal is the total work against the piston, 
Qh,total is the total heat flowing into the system from the hot 
heat reservoir and τ is the total time for the simulation. 
Figure 8, shows variation of power (P) at various u. We 
have found that the maximal power is realized at u ≈ 0.015.  

Figure 9 compares the efficiency at maximal power ηmax = 
η(umax) with the CA efficiency at Th  = 1 and various Tc, where 
umax is the speed giving the maximal power (obtained by 
plotting power vs piston speed (Figure 8)). We have found 
that our ηmax does not always agree with ηCA but tends to 

approach ηCA as Tc → Th for both of the MD data and the 
numerical line.

The MD simulation efficiencies resulting under MP and 
ME conditions have been derived and then compared 
in Ref.[146] by using nearly ideal gas working substance 
enclosed in a 2D-heat engine. The model is quite similar 
to that considered by Izumida et al.50 Apart from MP and 
ME criterion, a modified version of function E58,147was taken 
into consideration for optimization and is given by

Eϵ  = P(η)- ϵ Tc σ(η)                                                               (59)

Where ϵ is a parameter that depends on the heat transfer 
law. If ϵ = 1 in Eq. (59), the original ecological function is 
recovered4; on the other hand, when , the 
modified ecological function is obtained for a Newtonian 
heat transfer law. When E is maximized for a linear heat 
transfer law the engine efficiency becomes,

                                     (60)

ηc being the Carnot efficiency ηc =1 - τ and τ = Tc/Th. On the 
otherhand, when Eϵ is maximized for the case of Newtonian 
heat fluxes, the obtained optimal efficiency is.58,147

                                (61)

The MD simulation results under MP, ME and MEϵ are 
presented in Figure 10. In the τ → 1 limit (where adiabatic 
processes times are negligible, compared with the 
isothermal processes times) MD-MP efficiency approaches 
ηCA, however, for any value of τ, MD-ME and MD - MEϵ  
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efficiencies are in good agreement with ηEϵ, which is also 
close to the upper bound given by the low dissipation 
model with ME criterion ( )(see Eq. 42). The shaded 
region represents the so-called operability region for heat 
engines. In the operability region, it is observed that as τ 
decreases the MD-MP points start approaching ηEϵ and 
below τ = 0.5, efficiency in both cases is better represented 
by ηEϵ than by ηCA. Thus, interestingly, there is an overall 
agreement between the computed MD efficiencies at these 
optimization regimes and . 

Figure 10.MD simulation results for MP, ME and MEϵ
146

Real-gas like system:148

To simulate a real gas in a finite-time Carnot cycle by means 
of MD simulations, the working substance is chosen to 
be made of highly dense spherical particles, that is, for 
which intermolecular interactions are not negligible. The 
simulation model used in the present work shares some 
similarities with the approach used by Izumida et al.50 To 
integrate Newton’s equations of motion, Velocity Ver let 
algorithm was used. The efficiency and power of the model 
heat engine were computed by varying the values of the 
parameters. In particular, the efficiency at various process 
rates were compared to theoretical predictions.

Simulation Model

The model engine consists of a 3-dimensional cubic box 
of length L containing N identical gas particles of mass m. 
One of the box sides is made of a moveable piston where 
as the other opposite side is a thermalizing wall, as shown 
in Figure 6. At each side of the box, periodic boundary 
conditions are applied on the gas particles, except those 
at which the piston and thermalizing wall are located. 
The potential through which the gas particles interact is 
considered to be Lennard-Jones potential which is given by:

                                                 (62)

where r is the inter-particle separation, ε is the depth 
of the potential well and σ is the distance between two 
particles at which inter-particle potential becomes zero. 
Moreover, the potential is truncated at a distance 2.5 σ 
and shifted, making long range interactions negligible. 

Since the potential described by Eq. (62), depends only 
on inter particle separation, the particles are assumed to 
be spherical.

Simulation Result

The values used are N = 4000, Tc = 1.25, L = 50, kB = 1, ε = 1, 
σ = 1 and m = 1. All these parameters except the number 
of particles are in reduced unit and are kept constant for 
all simulations. The Lennard-Jones parameters σ, ε and 
m are chosen to be the units of distance, energy and 
mass respectively. Moreover, the temperature of the cold 
reservoir becomes Tc  = 268 K while the range of variation 
of the hot reservoir temperature is [310 K–375 K]. As 
for the piston speed, the range of values studied in the 
present work is 1.164×10-3 m/s to 1.164×10-1 m/s. Xenon 
gas is used for illustration because as a monatomic gas, it 
is well suited for being modelled by Lenard-Jones spheres 
The molar volume of the present model system is 0.895 lt/
mol which is small compared to that of an ideal gas, 22.414 
lt/mol, but large enough compared to that of water, 0.018 
lt/mol. Although it seems that gas is more than 10 times 
denser than the ideal gas at standard conditions, but there 
is another method to verify the real gas regime by simply 
calculating the average inter-particle distance which is 
about 2.15σ. Since this value is smaller than the particle-
particle interaction cut-off distance rc, it implies that each 
particle is in average within the interaction range of its 
nearest neighbours. Hence, it is believed the substance is 
sufficiently concentrated to be treated as a real gas. The 
engine operates at different piston speeds ranging from u 
= 0.001 to u = 0.1 in the isothermal branches of the cycle, 
while the adiabatic processes are performed at a uniform 
speed u’ = 0.01 when u ≤ 0.01 and u’= 0.1 when u > 0.01. 
Note that values of u’ essentially have been set for practical 
purpose because, it cannot be externally imposed, being 
the result of the spontaneous expansion (compression) of 
the substance. It should also be pointed out that another 
choice for the value of u’ does not change the overall result 
as long as u’ > u. 

The temperature-volume (T-V) diagram of finite-time 
processes for Th = 1.45 is shown in Figure 11, and for 
three values of the piston speed including the quasi-static 
case for comparison purpose. It has been observed that 
for relatively small piston speeds, the cycle obtained is 
quite similar to the for the quasi-static process, where as 
larger piston speed causes a significant departure and thus 
characterized by a reduction of the area inside the cycle. 
In fact, the temperature of the gas is not only subjected to 
fluctuations but its average is systematically higher (lower) 
to that of the cold (hot) reservoir, the deviation becomes 
more important as the piston speed increases. This result 
can be explained with the fact that when a heat engine 
operates at a finite piston speed, it exchanges heat with 
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reservoirs at a finite rate in order to keep a steady cycle. 
A temperature gradient between the working substance 
and the heat reservoirs is therefore required to create 
such conditions.

Figure 11.Tempaerature-Volume (T-V) diagram for 
different pistons speeds148

Figure 12.Power dependence on u for different Th
148

Figure 13.Efficiency dependence on temperature 
ration for three values of piston speed148

Figure 12 represents the output power per cycle as a 
function of piston speed for various values of the hot 
reservoir temperature. The behaviour of all curves is almost 
similar, that is, power increases initially up to a given value 
of the piston speed followed by a steady decrease beyond 
that point. This can be explained as: for slower processes the 
time needed to complete a full cycle, is too large making the 
power vanishingly small; on the other hand, for processes 
at large piston speed, only a small amount of the supplied 
heat is converted to work, hence, yielding again negligibly 
small values for P. Note that the piston speed at which 
the power becomes maximum is almost the same for all 
temperatures Th. This interesting finding may indicate that 
there is an optimum piston speed not dependent upon the 
temperature of the heat reservoirs, at least for the range of 
temperatures investigated in the present work and thus may 
have practical implications on the design of heat engines. 

The variation of the efficiency with the temperature ratio Tc/
Th  for different values of the piston speed is demonstrated 
in Figure 13. For all values of piston speeds, the efficiency 
is monotonically decreasing and approaches zero as the 

temperature ratio approaches 1, an expected result. It is 
clear from the Figure 13 that the efficiency varies linearly 
with the temperature ratio for a small value of piston 
speed and this is similar to the quasi-static case for which 

.  For a piston speed close to the one yielding 
the maximum power (Figure 12), in this case u = 0.01, 
the efficiency dependence becomes , where a ≈ 
0.43, which is slightly smaller than the exponent in the 
expression of the Curzon-Ahlborn efficiency. This implies 
that the Curzon-Ahlborn efficiency is not well suited to 
represent model engine based on a highly dense real gas. 
The operation of such engine can be optimized by applying 
a unified optimization criterion developed by Hernandez 
and his colleagues7 that makes a good compromise 
between efficiency and power. The investigation carried 
out by varying the temperature of the hot heat reservoir, 
shows that the optimum piston speed depends weakly on 
temperature.

Efficient Power Criterion
Different optimization criteria based on thermodynamic, 
economic, compromised, and sustainable considerations 
can be suggested. Efficient power was introduced by 
Stucki149 while studying the mitochondrial energetic 
processes within the context of the linear non-equilibrium 
thermodynamics. Later the idea was extended by Yan 
and Chen65-66 to the regime of FTT and given the so-called 
name efficient power by Yilmaz.12-13 His intention was 
to get a trade-off between the delivered power and the 
efficiency for a heat engine. He called this new function 
as “Efficient Power” introduce defined as the product of 
the power output by the efficiency: Pη = Pη. It is shown 
that the efficient power criterion is also well suited to 
study the optimization of biological systems,139,149-151 steady 
and non-steady electric energy converters,152 thermionic 
generator,153 and low dissipation heat engines.154 For some 
naturally designed biological systems, Maximum Efficient 
Power (MEP) conditions may lead to more efficient engines 
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than those at maximum Omega function (MΩ) or ecological 
function.151 It has been observed that the universal features 
of efficiency are not exclusive to the conditions of MP and 
MΩ but also extend to the engines operating in MEP regime 
also as shown below65

 (63)  

Where in, the universality of linear term and quadratic 
term is related to tight-coupling condition and to left-right 
symmetry respectively as discussed for MP and ME criterion. 
These two terms in the above equation were also derived for 
the MEP of a nonlinear irreversible heat engine152 working in 
strong coupling limit under the symmetric condition by using 
master equation model. The low dissipation model with 
symmetric dissipation also displays similar behaviour (Eq. 
(63)) up to quadratic term while for asymmetric dissipation, 
the lower and upper bounds for the efficiency in MEP 
regime are derived.153

Multi-parameter Combined Performance 
Criteria
Yan65-66 introduce a multi-parameter combined objective 
function of the efficiency and power output as

F = ηλ P                                                   (64)

where λ is a weight factor whose value may be chosen from 
zero to infinity. The chosen parameter λ here has explicit 
physical meaning, because every value of λ corresponds 
to one particular function. This general multi-parameter 
combined objective function can be adopted as the 
optimization criterion instead of the single optimization 
criterion to derive the universal expression of the efficiency 
for a simple model of heat engines

In Ref.[151], by using stochastic thermodynamic analysis with 
a master equation description of a driven open system155, 
the universal expression of the optimization efficiency with 
a multi-parameter combined objective function is derived. 
The results obtained show that the optimization efficiency 
displays universality up to quadratic order term of ηC for the 
strong coupling systems in presence of left-right symmetry.
It has been shown that the optimal results derived from 
the multi-parameter combined objective function can be 
directly used to describe the performance of nonlinear 
irreversible heat engines operating at the maximum power 
(λ = 0), the maximum efficiency-power state (λ = 1), the 
maximum ecological or unified trade-off function (λ = 2), and 
the maximum efficiency (λ =∞). This study fully embodies 
the advantages of using the multi-parameter combined 
objective function to discuss the optimization problems 
of thermodynamic systems.156

Discussion
In this review paper, we had briefly discussed the 
optimization of heat engines under different objective 

functions since thermodynamic optimization has a crucial 
role in identifying the mechanism that provides optimal 
efficiency for finite-time processes. We discussed the 
key procedures to derive the optimization efficiencies at 
maximum power, maximum ecological (or Omega) function 
and maximum efficient power. First, we investigated the 
Efficiency at Maximum Power (EMP) for different models 
of heat engines. The universal behavior of EMP can be 
observed in the study of these models up to second order 
when expanded near-equilibrium. However, this universality 
seems to be broken down for the quantum dot engine. 
The origin of this universality breaks down lies in terms of 
irreversible thermodynamics and a singular behaviour of the 
mechanical current. In fact, the absence of linear response 
regime of thermodynamic fluxes may yield various values 
of the linear coefficient in the standpoint of irreversible 
thermodynamics. It has been noted that heat engines 
operating at MP are not the most efficient ones and, hence, 
are not much economical. Actual thermal plants and heat 
engines should not operate at MP, but in a regime with 
slightly smaller power and appreciable larger efficiency.157-158 
The optimization of Omega criterion (ecological criterion) 
and efficient power criterion falls in such a regime. They pay 
equal attention to both power output and efficiency. Firstly, 
we investigated the efficiency at maximum Ω criterion (or 
ecological criterion) for the heat engine models considered 
for maximum power optimization. It was verified that the 
efficiency at maximum Ω criterion also exhibits universality 
up to quadratic order in the deviation from equilibrium for 
the strong coupling systems in the presence of a symmetry 
condition. Finally, optimization of another objective function 
named efficient power has been investigated and it also 
leads to universal behaviour of efficiency in different models. 
This condition is in agreement with that of the universal 
efficiency at maximum power. Then, a multi-parameter 
combined objective function is discussed which includes 
different objective functions is appearing in literature.
Recently, it has been pointed out that the problem of 
local stability of operation regimes can be related with the 
regime’s optimization itself.159-161

Conclusion
Concluding, we can say that, to achieve an engine’s optimized 
performance, a suitable performance criterion has to be 
introduced and optimized. The use of various performance 
criteria leads to different performances in optimization and 
is suitable for different specific considerations. Although, 
there are many approaches to describe good performance 
regimes of heat engines but still there is no systematic 
method on which these criteria are based. We have the 
freedom to select any performance criterion based on 
thermodynamic, economic, compromised, and sustainable 
considerations.
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