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Abstract
This research work is concerned with the application of Gaussian process regression kernel machine 
learning approach in modelling a metamaterial antenna. MATLAB Graphical user interface (GUI) was used 
to randomly select two frequency points within the range 2.5GHz ≤ f ≤ 3GHz and ten points in the range 
3GHz ≤ f ≤3.6GHz respectively. The training and test inputs generated for the model were standardized 
along with the frequency of operation. The rand function in MATLAB was used to generate ten sets 
of values between 0 and 1. The lowest negative log likelihood value gotten was -1.9762. This value is 
produced by the gp model with an initial hyper parameter value set at 0.1386. The model likelihood value 
is -13.8155. The model is capable of predicting optimal antenna responses for any new set of input data 
associated with the modelled metamaterial antennas.
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Introduction
The modelling, analysis, and design of antennas and 
multitude of other electromagnetic (EM) devices utilized 
in Radio frequency, Microwave and Optical communications, 
Radar and Signal processing etc. have been heavily 
dependent on numerical methods (the Method of 
Moments) [1], ( the Finite Element Method (FEM) [2,3], 
Finite Discrete Time Domain [4], and hybrid techniques 
[3] and their attendant algorithms, solvers and software’s, 
i.e. the so called full-wave analysis which includes the use 
of the Numerical Electromagnetic Code (NEC) [5], the 
COMSOL software and the ANSOFTF HFSS and lately the 
CST Microwave Studio.

Within the past few decades, these methods have also been 
applied to the modelling and development of antennas 
and electromagnetic devices made of artificial or man-
made/engineered materials (Electromagnetic Band Gap 
Structures/High Impedance Surfaces, Artificial Magnetic 
Conductors, Frequency Selective Surfaces, and Double 
Negative Materials) all collectively known under the term 
Metamaterials [6,7,8], which exhibit certain anomalous 
properties such as negative permeability and permittivity 

leading to negative indices of refraction, reverse Doppler 
effect, reverse Vavilov-Cerenkov radiation, Support of 
backward waves (antiparallel phase and group velocities), 
Super resolution imaging and planar slab lensing.

Antennas and Microwave devices made with these 
materials inculcate superior qualities involving improved 
electromagnetic compatibility due to reduced coupling 
(elimination of surface waves), enhanced gain, radiation and 
impedance characteristics and miniaturization. However, 
the use of metamaterials for the design and construction of 
antennas and EM devices has led to an increased complexity 
in material and structural compositions. As such, modelling 
and design with full-wave analysis techniques have been 
observed to be too time consuming especially in antenna 
optimization scenarios, where several full-wave simulations 
will have to be run for a complicated antenna structure or a 
single unit cell of a metamaterial microstructure. Thus for 
such applications, full-wave analysis becomes prohibitively 
expensive and uneconomical [9, 10, 11].

Consequently, the need for the rapid and optimal design of 
complex antenna/EM structures in general and metamaterial 
antennas in particular has of recent shifted the attention of 
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the EM and antenna engineering community to the use of 
statistical methods and machine learning techniques (mostly 
based on Artificial Neural Networks, Gaussian Process 
Modelling and Support Vector Machines) [12,13,14], in 
conjunction with CAD tools for the modelling and design 
of antennas and EM devices.

The research work involves the application of the 
Gaussian Process Regression kernel machine learning 
(GPML) approach to model a metamaterial Antenna.  In 
particular, the GPML toolbox version 4.0 which runs on a 
MATLAB platform will be used to develop two models for 
the responses (real and imaginary parts of the reflection 
coefficient) of a high impedance surface antenna based 
on certain input characteristics (wire length and spacing 
of wires) and frequency of operation.

Literature Review
Gao and Wang in [15] developed an efficient EM trained 
artificial Neural Network (ANN) for Coplanar Waveguide 
(CPW) components to calculate S parameters of 
Electromagnetic Band-Gap (EBG) circuits involving an EBG 
band stop filter and EBG resonator. The agreement between 
the model and experimental results shows that the NN 
model was very effective for the analysis of this type of 
circuits. The NN modelling and design of EBG’S was taken 
a step further in [16] where a novel neuro-computational 
model based on ANN was used for the modelling and 
analysis of a rectangular waveguide and a parallel plate 
waveguide structure. The proposed ANN model gave results 
in excellent agreement with measured results available in 
the literature. In addition, the technique had the ability 
to generalize for new variables of input parameters and 
frequency ranges.

As an alternative to ANN modelling, Villiers and Jacobs in 
[9] proposed the use of a structured supervised learning 
technique for modelling a CPW-fed slot antenna input 
characteristics based on a standard Gaussian Process 
(GP) regression model. The method was used to model 
S- parameter input characteristics against frequency 
for a CPW-fed second resonant slot dipole, while an 
approximation method for large datasets was applied to 
an ultra-wideband (UWB) slot with U-shaped tuning stub. 
The results obtained based on predictions had an accuracy 
comparable to the target moment-method-based full wave 
simulations- While the slot dipole exhibited a normalized 
root mean squared error of 0.50%, the UWB antenna had 
an error below 1.8%. It was also pointed out that the GP 
regression methodology had various inherent benefits 
which includes the need to learn only a handful of hyper 
parameters and training errors that were effectively zero 
for noise-free observations.

Along the same lines with the GP Regression model, Liu 

and Ji in [10] proposed an automated computation system 
for large scale design of metamaterials (MTMs) utilizing a 
computer model emulation technique (CME) that generates 
a forward mapping from the MTMs particle’s geometric 
dimension to the corresponding EM response. In [11] 
it was shown that the CME technique was based on a 
Bayesian nonparametric model, namely Gaussian Process 
mixture, which is approximately expressed in a closed form 
Drude-Lorentz type model. This GP mixture model was 
illustrated as having the ability to tackle non-stationarities 
and discontinuities in the mapping function. The models 
inference was carried out via a Markov chain process 
relying on Gibbs sampling and the experimental results 
demonstrated that the proposed approach was highly 
efficient in facilitating rapid design of MTMs with accuracy.

The fundamentals and applications of another alternative 
and efficient approach for antenna design based on machine 
learning was expertly expounded by Martinez-Ramon 
and Christodoulou in [17] - the so called Support Vector 
Machine (SVM) approach. This technique has been proved 
to have superior performances in a large variety of real 
world applications due to their generalization abilities 
and robustness against noise and interferences. This novel 
technique was applied to antenna array processing and in 
particular non-linear beam forming and parameter design 
for arrays. In accordance with [17], G. Angiuilli, et.al in 
[18] describes how microwave devices and antennas can 
be modelled via the Support Vector Regression Machine 
approach by first taking into account the short comings 
of the ANN modelling scheme- these include lack of 
definite and effective methods for the determination of 
the number of hidden layers and hidden nodes in ANN 
models, difficulties with generalization and the production 
of models that over fit the data. Emphasis were laid on the 
Structural Risk Minimization Principle embodied in the SVM 
model which enables it to partially overcome the above 
mentioned short comings of the ANN model.

Finally, it will suffice to say that the research work carried 
out presently is geared towards utilizing a kernel machine 
learning (Gaussian Process Modelling) approach in 
conjunction with CAD tools for a more time efficient and 
cost effective (as compared to entire full-wave analysis) 
modelling and optimization of a patch antenna.

Materials and method
The high impedance surface antenna was created via the 
CST software and is depicted in figure1 below:

In the figure above, L is the wire length, S is the spacing 
between wires, W is the width/diameter of the wires and 
t depicts the thickness of the substrate or ground plane.

The following simulations were carried out in CST with 
respect to the antenna:
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Design Space
34mm ≤ dL ≤ 42mm

5mm ≤ s ≤ 7mm (distance between strips on AMC surface)

Frequency range
2.5 GHz ≤ f ≤ 3.6 GHz (1021 points)

Training data
50 geometries generated using Latin Hypercube Sampling 
(1021 frequency points per geometry)

Test data
20 LHS geometries, not included amongst the training 
geometries (1021 frequency points per geometry)

The above data was stored in .txt files as follows:

Geometry dimensions in mm
new24.050_020.rs6.txt (first 50: training geometries; rest: 
test geometries)

CST Re(S11) and Im(S11) responses
new24_S11R_050_020.txt (first 50: training; rest: test)

new24_S11I_050_020.txt (first 50: training; rest: test)

In order to initiate the modelling of the antenna in the 
GPML frame work, the first step involves reading in the 
above generated data into the MATLAB platform; this is 
achieved by developing the following MATLAB codes.

Response.m :  This code reads in the data stored in the 
files new24_S11R_050_020.txt (first 50: training; rest: 
test) and new24_S11I_050_020.txt (first 50: training; rest: 
test) into the MATLAB environment. The MATLAB arrays 
generated are then stored as S11R and S11I. In addition, 
the file Response2.m is utilized to extract the responses 
from the frequencies and store them in the arrays SR- for 

Figure 1.High impedance surface antenna

Figure 3.Im(S11) response with selected 
training points

Figure 2.Re(S11) response with selected 
training points

Re(S11) and SI- for Im(S11). 

Dimension1.m: This code reads in the data for the 
geometrical dimensions new24.050_020.rs6.txt (first 50: 
training geometries; rest: test geometries) and stores 
the contents in the array’ X’. These input dimensions in 
conjunction with frequency are standardized in the MATLAB 
file standardization.m.

Generation of Training Data
In order to generate training data from the responses 
Re(S11) and Im(S11), the first column of S11R which contains 
the frequency points are plotted against the 50 columns of 
SR and SI to produce 50 plots each for both the real and 
imaginary responses respectively.

The MATLAB Graphical User Interface (GUI) is then used 
to randomly select 2 frequency points within the range 
2.5GHz ≤ f ≤ 3GHz and 10 points in the range 3GHz ≤ f ≤ 
3.6GHz respectively. An example of such graphs is shown 
in figures 2 &3 below:

The real and imaginary responses plotted without the 
target points are produced by the codes plotnewRE.m and 
plotnewIM.m respectively, the resulting figures are saved 
as FigRE.fig and FigIM.fig respectively. The complete sets of 
plots with the target points are stored in the folders named 
realfigs.m for the real part of the responses and imfigs.m 
for the imaginary part of the responses.
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Inputs (Training And Test) And Responses 
(Training And Test)
The training and test inputs for the model are generated 
in MATLAB file Dimension1.m and are then standardized 
along with the frequency of operation in the MATLAB file 
named standardization.m. The file,’ xtr’ stands for the array 
that stores the training inputs and ‘xts’ stands for the array 
that stores the test inputs.  Also, the arrays fre_train and 
fim_train contain the real and imaginary training frequency 
while the array ftest contains the test frequency. Finally, 
the arrays ftr_real, ftr_im, fts-real and fts_im contains the 
standardized versions of the imaginary and real training and 
test frequencies. The training responses are generated in 
MATLAB file named trainRESPONSE.m, within the file, the 
array yre_train stores the real part of the training responses 
while the array yim-train stores the imaginary part of the 
training responses. The test responses are generated in 
MATLAB file named testRESPONSE.m, within the file, the 
array yre_test stores the real part of the test responses 
while the array yim-test stores the imaginary part of the 
test responses.

GP Model

The model for the real and imaginary responses are given 
in the MATLAB files gpreal.m and gp_im.m. In the files, 
the training and test inputs are provided and the mean 
function, covariance function, likelihood function and 
method of inference are specified. The likelihood initial 
hyper parameter value is at log (1e-6).  The rand function in 
MATLAB was used to generate 10 sets of values between 0 
and 1. These values were utilized as the covariance function 
initial hyper parameter values.

-0.2860 -0.1735 -1.0450
-1.3661 -1.3692 -0.1854
-0.6812 -0.2054 -0.5356
-0.3580 -1.4126 -0.5984
-0.1155 -0.0733 -0.0864
-0.0416 -1.0498 -1.2525
-0.6029 -1.6266 -0.2781
-1.9762 -1.3819 -0.2828
-1.9018 -0.4845 -0.9665
-1.3567 -0.7480 -0.5660

Table 2.Resulting negative log marginal                          
likelihood values

This value is produced by the gp model with an initial hyper 
parameter value set at 0.1386.

The model likelihood value is -13.8155.

Summary and Conclusion
The field of Electromagnetics and antenna design is replete 
with and heavily dependent on full-wave simulations in-
order to carry out the optimal design of antennas and 
electromagnetic devices. Contemporarily, the CST Studio 
Suite is one of the choice software for electromagnetics 
design. Basically, the software package comprises of the 
CST Microwave Studio, CST particle studio, CST Mphysics 
Studio, CST design Studio, CST PCB Studio and CST Cable 
Studio. Of particular interest in the present work is the CST 
Microwave Studio which is a specialized tool for the fast 
and accurate 3 dimensional electromagnetic simulation 
of high frequency problems. Along with a broad range of 
applications, it offers shorter development cycles, virtual 
prototyping before physical trials and optimization in place 
of experimentation. Consequently, CST microwave studio 
was used in the initial preliminary design of the proposed 
patch antenna which operates in the GHz range (center 
frequency of 3GHz), with dimensions in millimeters. In terms 
of construction, the antenna consist of a one dimensional 
(1D) high impedance surface (HIS) comprised of uniformly 
spaced parallel wires of annealed copper  with lengths 
slightly less than 

2
λ

 around the resonance frequency
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