Journal of Engineering Design and Analysis
Volume 3, Issue 2 - 2020, Pg. No. 8-12
Peer Reviewed Journal

Research Article

Client-Side Pagination for Large Dataset
Saikat Bagchi

Infosys Limited, Bhubaneswar, Odisha, India.

I NF O ABSTRACT

E-mail Id:
sbagchi.research@gmail.com
How to cite this article:

This work attempts to provide a solution to address the challenges in
fetch and represent of large set of records at client-side application.
In general user interfaces represent search results in paginated data
tables and use just-in-time asynchronous calls to service end points to
get the page content. There are several alternative or complementary
practices to support client-side pagination, e.g. Indexing of data through
specialized indexing tools, cache systems, leveraging suitable algorithms
for optimized data retrieval from storage etc. A well-crafted strategy
for service calls and management of client-side resources, is essential
for achieving reasonable system performance and user experience.

Keywords: Pagination, Client-Side Pagination, Dynamic Pagination,

Bagchi S. Client-Side Pagination for Large Dataset.
J Engr Desg Anal 2020; 3(2): 8-12.

Date of Submission: 2020-11-15
Date of Acceptance: 2020-11-27

Pagination for Large Data, Scalable Pagination

Introduction

Enterprise systems generally process and represent large
amount of information and data with intrinsic principles and
objective to address stated business goals. System designers
of any interactiv e system often face two key challenges
retrieval of context specific data and representationto
system users. The challenges become acute when large set
of data need to be presented to users. A typical instance
of this issue is observed in implementing search functions
in applications. Designers adopt pagination techniques to
provide an organized, bucketed display of subset of search
results at client-side interfaces. Asynchronous techniques
like AJAX,! help in adopting hybrid solution using both
client-side and server-side pagination. While client-side
pagination is generally appropriate for low volume of
data, server-side pagination is apt for large data set. It
is also adopted when there are accessibility restrictions
for usage of client side scripting (e.g. java-script). Correct
implementation of pagination is always challenging and
demands good amount of effort and analysis by designers.?

Adoption of a hybrid solution for pagination, proves to
be more useful in handling large data set. This approach
cuts through all layers of a system to apply optimization
techniques. Offset or value (cursor) based methods® may

Journal of Engineering Design and Analysis (ISSN: 2582-5607)

Copyright (c) 2020: Advanced Research Publications

be used for retrieving data from database; placement of a
well formed cache layer assists in improvement of service
response time in delivering the paginated data to client,
butonly server- side optimization is not enough for meeting
the performance and scale related challenges. A well-crafted
strategy, for service calls and optimum usage of client-side
resources, isessential for achieving reasonable system
performance and user experience. This work proposes
one such client-side solution for pagination of large set
of records.

Related Work

Paginationis a real challenge in client-side application that
wants to present large set of data to users. This problem is
mostly relevant for systems that display search results to
users. A number of third party libraries (both opensource
and commercial) are available in market for providing
out-of-the-box solution for client-side pagination, but it
is often observed that these libraries might not help in
handling large dataset efficiently. Two of the frequently
followed approaches,used for getting data from server-side
applications, are: a) individual service call for fetching each
page content, b) service call to fetch content for multiple
pages in batch. Cao J. et al.> have given a comparative
analysis of pagination algorithms based on large data sets

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

- server-side pagination algorithms used in data retrieval
from database storage. Most of the available articles and
analysis works, related to pagination, are mainly focused
around the client-side best practices for representation
of paginated view to users.®!® There have been some
work on identification of disadvantages of pagination in.
There are discussions and analysis around pagination and
performance issues at client-side pagination.**3 explains
the data paging technique using backendless tool, which
uses offset based approach for data retrieval at server-side.
The scope of above mentioned study and analysis were
mostly around the client-side representation and server-
side data retrieval. There needs to be a comprehensive
approach for handling challenges for client-side pagination
of large dataset.

Proposed Solution for Client- Sidepagination
of Large Data in Search Result

Assumptions

This work assumes that the underlying system is following
client-server principles; server-side data retrievalis using
offset/ value-based methods; service api end points are in
place for providing data and an asynchronous methodology
is adopted at client-side for interaction with service end
points.Client-side cache is used for temporary storage of
data in pages.

Client-side Configuration

Sorvicz apt il o getzal
ot i cond. Cu Kaey
exch cmdron

(= ET Dl 30 FEEER
oo by Caches

=afacnc al feiad =i zal
cxhdmga’ = of LEpReRics
mriiaEn)

Homdy . pgenatics
e alewatdmogs
e srrsss gy Laads

T f1n Snaghkrie
Al s Qe

o i, g
2l nd 1 m oty

Figure |.Activity flow of proposed solution

Backward Buffer Visible Forward Buffer

— 1
Page —¥ 1 3536 4041 50

‘ Yoy ¢|

Figure 2.Cache content category

Description

Table 1.Configuration Parameters

Configuration

Description
Parameter P

Maximum capacity of data (record

set/ pages) that can be stored and

maintainedin local cache (browser

cache or any client-side in-memory
cache)

Cache capacity

Data size in
Service response

Number of records requested from
service end point in each service call

Pages in
pagination table

Number of pages displayed in
paginated data table to user

Page size in
pagination table

Number of records displayed per
page in paginated data table

Activity Flow
Figure 1, shows an activity flow of the proposed approach.

When a user performs search for any key word, a service
api call resolves the total count of qualifying records in
database. If the total number of qualifying records, is within
the cache limit, C, service calls are made to fetch and load
all records into client-side cache. On the other hand, if
the total number of records is more than cache capacity,
then C number of records are fetched from service, stored
into cache and grouped as sequenced pages. Service calls
are asynchronously triggered when a user navigates to
pre-identified pages. Service response data are stored in
forward/ backward buffers in cache based on the direction of
navigation path. The cache content enables the application
to provide a seamless experience in navigation of pages
in pagination table. This is explained in more detail with
example in next section. When a user navigates through
pages, the buffered pages are adjusted dynamically.

During forward navigation, service calls load pages into
cache in forward buffer and removes proportionate data
from backward buffer to maintain volume within cache
threshold. Exactly reverse operation takes place during
backward navigation i.e. service calls load data into
backward buffer and removes proportionate data from
forward buffer.

Cache content can be categorized as forward buffer, visible
pages, backward buffer. The visible pages are displayed
to user in pagination table (e.g. clickable page links in
pagination table in web interface), so that a user can access
the page content directly. The forward buffer contains pages
that a user can navigate forward in pagination table andthe
backward buffer contains pages that can benavigated
backward. This scheme is depicted in Figure 2.

ISSN: 2582-5607

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

Mathematical Notations and System Parameters

Following parameters are used in upcoming sections for
explaining system functions:

Cache capacity, C

rec

Record count in service response, S __
Record count per page in pagination table, P__

Count of pages displayed to user, P

page

Pages fetched per service call, S g = |_Sm/ PrECJ
Max. pages stored in cache, Croge = |_Cm/ PreCJ
Service calls for initial cache-load = |_C /S J
page’ page.
Pages in forward & backward buffers = (Cpage - Ppage)
Service Calls in Forward Navigation

After initial cache load, system would identify the page
positions, where service calls would be made during forward
navigation and backward navigation.Service call positions
during forward navigation can be computed using following
scheme:

Once a user performs search function, aset of service calls
asynchronously fill the client-side cache. Number of service
calls required, N_= LCpage/ SpageJ

After initial data load into cache, S oge number of pages at
beginning of cached pages would be visible to user and
forward buffer would contain, N, = (Cpage— Spage) number
of pages.

As user navigates forward to n page, where Spuge <n Nf
the backward buffer would contain (n - Spage) pages, the
visible part would have Spage and the forward buffer would

contain (Cpage - n) pages.

When the number of pages in forward buffer drops below

S, aservice callis triggered tofetchS _number of pages
page’ page

from service. Since cache capacity is fixed, so Spage number

of pages are unloaded from backward buffer.

As forward navigation continues, service calls are triggered
at every Spage intervals, till P, - thpageis fetched.

total
Number of residual pages that are yet to be fetched after
initial cache load = (P C)

total page
Number of service calls needed to fetch the residual pages
= (Ptota/ - Cpage) /

-2S

total page)

Let’s denote A = (Cpage Spage) + 1 andB = (P

Total number of service calls required for forward navigation
of all records, |_NS =(B-A)/ Spage—|

The sequence of page positions would be:

{A+(x x Spage) :x€ {0,1.....Ns}}

ISSN: 2582-5607

Service Calls in Backward Navigation

When forward navigations result in removal of cached
pages from backward buffer, backward navigations trigger
service calls at specific page positions to repopulate the
relevant pages to backward buffer and remove pages from
forward buffer.

The sequence of page positions for service call would be:

{x x S page XE {(N-1), (N-2), ..., 3,2}}
Ellaboration with Example

Let’s assume a user performs a search in web application
which provides search result depicted in Figure 3. The
paginated Table shows 5, pages at a time and there are
311 pages in total. It shows the forward and backward
navigation buttons at bottom-right corner.

Time System Type System Name) Criticality Actions

12/14/2018,22:21 Server testserver-1.abe 1728185617

2/14/2018, 22:21 Server testserver-2.abe 135589055 High

1211412018, 22:2 Server testserver-3.abe 3441426278

2/14/2018,22:21 Server testserver-4.abe 177071602

12/14/2018,2221 Server testserver-S.abc 539503448 High

2/14/2018, 22:21 Server testserver-6.abe 962484542 High

@ & ® O & @

12/14/2018,2221 Server testserver-7.abe 3110216400

1211412018, 22:21 rver 449786
2/14/2018 Serve: e — T 544978 High

1214/2018,22:2 Server testserver-9.abe 946422539 High L

311 pages 1 2 3

Figure 3.Sample paginated data
Configuration Parameters

Suppose, the system (client-side) is configured with
following parameter values:

Cache capacity, C_ =2500

Record count in service response, S __= 500

Record count per page in pagination table, P__ =50
Count of pages displayed to user at a time, P e =5
Following configuration parameters are derived from above
parameters:

Pages fetched per service call, Spage =S _IP..
= | 500/50 |
=10
Max. pages stored in cache, C =C_ /P
= | 2500/50 |
=50
Service calls for initial cache-load = Cpage/ S page
= (50/10)
=5

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

Pages stored in buffers (forward + backward) = (Cpage - Ppage)
=(505)
=45

Suppose, total qualifying recordsfor a given search condition
= 15520, then page count in pagination table would be,

P = |'15520/ Prec—|
= |'15520/ 50"|
=311.

Analysis on Service Calls and States of Paginated
Data

Forward Navigation

For above mentioned example the states of the paginated
data and cache buffer content would be as below. Figure
4 depicts this in detail:

Afterinitial data fetch by client when user performs search:
Visible pages to user = 15t to 5™

Pages in forward buffer = 6™ to 50"

Pages in backward buffer =0

When user navigates to (Cpage Spage) = 40t

Page the state would be as following:

Visible pages to user = 36 to 40th

Pages in forward buffer = 415 to 50"

Pages in backward buffer = 1%t to 35%

When user navigates to (Cpage - Spage) +1=(50-10)+1=
41 page, a service call is triggered to load next Spage =10
pages. At the same time S oqe = 10 pages are removed from

backward buffer to avoid cache overflow. The state of the
system would be as below:

Visible pages to user = 37" to 41¢
Pages in forward buffer = 42" to 60
Pages in backward buffer = 11* to 36t

For identifying the pages where service calls are triggered,
let’s use the derived parmeters from Section C.3.
A=(C,.-S..)+1=(50-10)+1=41
B=(P,,-2x5,)=(311-2x10) =291

N,= [(B-A)/S,, = (29141)/10|=25

The sequence of page positions for service call would be as
follows (from 2™ service call onwards after user performs
search):

{A+ (xx Spage): xe{0,1.....N }}

= [41, {41 + (1 10)}, {41 + (2 10)}, {41 + (3 x 10)}..., {41
+(2.5 x 10)}]

=[41, 51, 61, 71....., 291]

Service call to be triggered

Visible Buffer l

1 \

Page —» 1 56 “a 50

‘¢ ' '

Service call to be triggered

Buffer Visible Buffer
r 1
Page —» 1 35236 4041 50
Servicecall Nex: service call
tiggered to be triggered
Removed Bffer Visible Buffer
r 1 1 T 1
Page —» 1 1011 3637 4142 51 80

b IR

Service call Next service call
triggered to be triggered

Removed Buffer Visible Bifer
1T 1T T 1
46 47 5152 6 70

v

Figure 4.Pagination table, cache states and page
positions for service call during forward navigation

Next service call

to be triggered
Buffer Visible Buffer
' 30 ! ! !
21 46 47 51 52 70

Y vy Y

Next service call ~ service call

to be triggered triggered
Buffer Visible Buffer Removed
| — I | —
" 2021 2930 3435 6061 70

‘¢ 2

Wb v

Figure 5.Pagination table, cache states and page
positions for service call during backward navigation

Backward Navigation

Once the user has performed enough forward navigation
so that the cache contents are updated (i.e. service calls
> 2 have already taken place) the backward navigation
starts triggering service calls at specific pages to update
cache content.

When user navigates backward to 30" page, the state
becomes as below:

ISSN: 2582-5607

ICSSCI-2019: International Conference on Recent Advances in
Computer Science, Soft Computing and Information Technology

Bagchi S
J. Engr. Desg. Anal. 2020; 3(2)

Visible pages to user = 30 to 34t
Pages in forward buffer = 35" to 60"
Pages in backward buffer = 11* to 29

When user navigates back to 20thpage, the state becomes
as below:

Visible pages to user = 20" to 24

Pages in forward buffer = 25" to 50"
Pages in backward buffer = 1%t to 19"
Figure 5, shows the corresponding details.
(xS e x€{(N-1), (N-2), ..., 3,2}}

= [(25-1) x 10, (25-2) x 10,...,3 x 10, 2 x 10]
= [240, 230,..., 30, 20]

Benefits

The proposed solution has both primary and auxiliary
benefits. It helps in addressing the challenges associated
with client-side pagination requirement for large set of
search results.

The number of service calls required with this approach is
low compared to any alternative approach. Extensive use
of configurable parameters provide a complete control to
system owners/ administrators on performance tradeoffs.

Client-side cache, with dynamic split of forward buffer,
backward buffer and visible window of data, helps in faster
page navigation.

Pre-load strategy in forward/ backward buffer segments
help in seamless navigation experience to users.

Storage of a fixed number of pages in cache (cache capacity),
helps in gaining full control on resource utilization. Fixed
and configurable cache size helps in achieving a steady
application performance.

Limitation
This solution works very well for gradual navigation of pages
in forward or backward direction, but it would not be able

to provide users Service calls are triggered at following page
positions with first and last page link in pagination table.

Forward/ backward navigation keeps triggering service
calls at specific pages and load/ unload of data continuous
updating cache content. As a result, first page and last page
content are not maintained all the time in cache.

Conclusion

Design of client-side pagination strategy is a challenge
to system designers especially for handling large set of
data. There are well known algorithms and approaches for
handling scale oriented challenges related to pagination
at server-side, but a separate strategy for client-side

ISSN: 2582-5607

pagination need to be in place to accomplish an end-to-
end success. The proposed solution explained in this paper
helps in addressing the client-side pagination challenges.
This solution follows a well-orchestrated service call and
page management strategy. Extensive use of configurable
parameters help in gaining full control on performance
trade-offs.

Future Work

Additional capabilities, for support of first and last page in
pagination table, would provide additional value in user
experience. Further analysis can be performed related to
performance and scale.

References

1. Oleg M. Ajax programming with Struts 2. Network
World, Inc. 2019.

2. Lyndon B. Perfect PHP Pagination. Site Point. 2019.

Jack M. Offset and Cursor Pagination explained. 2019.

4. Technical Servies. The art of pagination - Offset vs.
value based paging. Novatec. 2019.

5. Cao J, Wang W, Shu Y. Comparison of Pagination
Algorithms Based-on Large Data Sets. In: Qi L.
(eds) Information and Automation. ISIA 2010.
Communications in Computer and Information Science,
2011; 86.

6. Sven L. Pagination - Examples and Good Practices.
Smashing Magazin. 2019.

7. Abdul-Rahman A, Gimson R, Lumley J. Automatic
Pagination of HTML Documents in a Web Browser. 2009.

8. Hu M, Kuang Y. Human-Machine Interface: Design
Principles of Pagination Navigation in web applications.
ICCSE 2014. The 9™ International Conference on
Computer Science & Education. 2014.

9. WangP, XiY, Ma Let al. Research and Implementation
of Pagination Algorithm over Massive Data Based on
Ajax Technology. IEEE Xplore 2009.

10. Bootleg. How Paging Improves or Worsend your
website. Moz. 2019.

11. Manjoo F. Stop Pagination Now. Slate 2019.

12. Eder L. Why Most Programmers Get Pagination Wrong.
D Zone. 2019.

13. Piller M. How to Efficiently Load Large Data Sets in
a Mobile App With Data Paging. Backendless. 2019.

w

